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PRESTRESSING: AN IDEA GENERATING AN OUTSANDING 

ENHANCEMENT IN STRUCTURAL ENGINEERING
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THE STONE MATERIALS AND THEIR INTRINSIC 

WEAKNESS
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THE STRUCTURAL FORMS AS A CONSEQUENCE OF THE 

MATERIAL BEHAVIOUR
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A “ENHANCED” STONE. REINFORCED CONCRETE AS AN EXPRESSION OF THE 

STATICAL COLLABORATION OF NON-HOMOGENEOUS MATERIALS



NAVIER DIAGRAM AND STRUCTURAL BEHAVIOUR



M-N DIAGRAM FOR A 

DOUBLY SYMMETRICAL SECTION

The coordinates of the points ABCD (𝒇𝒄𝒕 = 𝒇𝒄 ):

A1 (N=fctA; M=0)

B1 (N=0; M=
w
2

(fct-fc))

C1 (N=fcA; M=0)

D1 (N=0; M=
w
2

(fc-fct))
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SECTIONAL BEHAVIOUR IN THE SERVICE STAGE
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𝑒𝑛
(𝑠)
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(𝑖)

M

z
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𝑦𝑠

𝑦𝑖

𝑁𝑃 = −𝐴𝑓𝑐

𝑀𝑃 = 0

𝑁𝑅 = 𝐴𝑓𝑐𝑡

𝑀𝑅 = 0

𝑁𝑄 = Τ(𝑀𝑐𝑡 −𝑀𝑐) ℎ

𝑀𝑄 = 𝑀𝑐𝑡−𝑀𝑐 𝛼 −  /

𝑁𝑆 = Τ(𝑀′𝑐 −𝑀′𝑐𝑡) ℎ

𝑀𝑆 = −𝑀′𝑐𝑡 𝛼 − 𝜂 + 𝑀′𝑐𝛼 /

𝑁𝑇 =
𝐴

2
(−𝑓𝑐+𝑓𝑐𝑡)

𝑀𝑇 = 0

(1)  
𝑁

𝐴
+

𝑀

𝑊𝑖
= −𝑓𝑐𝑡
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𝑁
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−

𝑀

𝑊𝑠
= −𝑓𝑐

(3) 
𝑁

𝐴
−

𝑀

𝑊𝑠
= 𝑓𝑐𝑡

(4) 
𝑁

𝐴
+

𝑀

𝑊𝑖
= −𝑓𝑐

𝑀𝑐𝑡 = 𝑊𝑖𝑓𝑐𝑡 ; 𝑀𝑐𝑡
′ = −𝑊𝑠𝑓𝑐𝑡 ; 𝑀𝑐

′ = −𝑊𝑖𝑓𝑐

 =
𝑟2

𝑦𝑖 𝑦𝑠
; 𝛼 =

𝑒𝑛
(𝑖)

ℎ
; 𝑡𝑔𝛽 = 𝛼 − 𝑘 ∙ ℎ = −

2𝑟2

(𝑦𝑖 − 𝑦𝑠 )
;

𝑘 =
𝑀𝑐 −𝑀𝑐𝑡

′

𝑀𝑐 −𝑀𝑐𝑡
′ +𝑀𝑐

′ −𝑀𝑐𝑡

𝑀𝑐 = 𝑊𝑠𝑓𝑐𝑡



THE RECTANGULAR SECTION
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BASIC FEATURES OF THE M-N DIAGRAM

ቐ
NA = Afct
MA = 0
eA = 0

ቐ
NB = −Afc
MB = 0
eB = 0

NC =
A

h
−fcyi + fct ys

MC =
Ar2

h
fc + fct

eC = ens 1 −
Afct
Nc

ND =
A

h
−fc|ys| + fctyi

MD = −
Ar2

h
fc + fct

eD = eni 1 −
Afct
ND

Basic features of the M-N diagram:

MC = |MD|

ND ≥ NC for yi ≥ ys

Kern eccentricities:

ens = −
r2

yi
; eni =

r2

ys

Limiting eccentricities:

eC = ens 1 −
Afct
Nc

; eD = eni 1 −
Afct
ND

For doubly symmetric

cross-sections:

y1 = ys |ens| = eni

NC = ND eC = eD

For no tension material:

ND = NC

yi
|ys|

eC = ens eD = eni



THE BENDING SECTIONAL PERFORMANCE IN THE SERVICE 

STAGE

∆M NQ = ∆M NS = ∆Mmax = Wi(fc + fct)

Mmax N = MR
+ N − Nep (1)

Mmin N = MR
− N − Nep (2)

For a prescribed eccentricity ep eqs.

(1), (2) represent the interaction

diagrams connecting the maximum

and minimum external moment to the

applied axial load. In order to draw

the interaction diagrams we have to

analytically represent the sides of the

parallelogram AP1BP’
2 in terms of

moment-axial load relationships.



M-N AND ΔM-N INTERACTION DIAGRAMS

Mmax = N eni − ep + eniAfc (NB ≤ N ≤ NQ)

Mmax = N ens − ep − ensAfct (NQ ≤ N ≤ 0)

Mmin = N ens − ep + ensAfc (NB ≤ N ≤ NS)

Mmin = N eni − ep − eniAfct (NS ≤ N ≤ 0)

∆M = eni − ens N+ Afc NB ≤ N ≤ NQ

∆M = −ens Afct + Afc = Wi(fct + fc) NQ ≤ N ≤ NS

∆M = en𝑠 − eni N− Afct NS ≤ N ≤ 0



e-v DIAGRAM

(1) emax = eni 1 +
1

ν
− 1 ≤ ν ≤ νQ

(2) emax = ens 1 −
k

ν
νQ ≤ ν ≤ 0

(3) emin = ens 1 +
1

ν
− 1 ≤ ν ≤ νS

(4) emin = eni 1 −
k

ν
νS ≤ ν ≤ 0

ν =
Afc
N

; k =
fct
fc



THE DESIGN OF A P.C SECTION

If ∆Mk ≤ ∆Mk
max

• NP1 ≤ N ≤ NP2

• eP1 ≤ e ≤ eP2

If ∆Mk ≥ ∆Mk
max

• Increase Wi , fc

• Add a bending moment M0 to MEk
min

so that M0 +MEk
min + ∆Mk

max = MEk

∆Mk
max = Wi(fc + fct)



THE ALTERNATIVE APPROACH TO SECTIONAL DESIGN

Np

x

N
M

z ep

Naming M0, N0 the resisting moment and axial load, we

can write:

𝑁0 = 𝑁 + 𝑁𝑝

𝑀0 = 𝑀 + 𝑁𝑝𝑒𝑝

The design action effects, M, N, become:

𝑁 = 𝑁0 −𝑁𝑝

𝑀 = 𝑀0 − 𝑁𝑝𝑒𝑝

The equilibrium must be satisfied with reference to a resisting domain translated

by the vector P with components -𝑁𝑝 , -𝑁𝑝𝑒𝑝 . Referring to the case of a

compressive force 𝑁𝑝, with positive eccentricity 𝑒𝑝, the two components of the

vector P are positive.



THE MODIFIED INTERACTION DIAGRAM
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Np Mct
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Mct+ Np ∙ 𝑒𝑛
(𝑠)

𝐞𝐧
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The straight lines defining the direction of vector 

P represent the geometrical locus of the vertexes 

of the interaction diagram M0-N0 with varying Np.

The increase of the resisting bending moment NP

is:

∆𝑴 = 𝑴𝒌′ −𝑴𝒄𝒕 = 𝑵𝒑 𝒆𝒏
𝒔

+ 𝒆𝒑

𝑁𝑃
𝐴

𝑁𝑃 ∙ en
s

Ws



THE RECTANGULAR SECTION
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Assuming 𝒆𝒑 = 𝜷𝒉 and 

remembering that 𝐞𝐧
𝐬

=
𝐡

𝟔
, the 

increase of the bending capacity
due to NP is:

∆𝑴 = 𝑴𝒌′ −𝐌𝐜𝐭 = 𝐍𝐩 𝐡
𝟏 + 𝟔𝛃

𝟔

ep

h/6

Np

fct

fct

Np

Mct+|Np|(h/6 + ep)

Np

Np

Τ𝐌𝐜𝐭 𝐍𝐩



HOW TO APPLY PRESTRESSING

Prestressing, which consists in applying the forces 𝑁𝑝, 𝑁𝑝𝑒𝑝, can be introduced in different

ways, whose convenience depends on different factors:

• Reliability;

• Execution;

• Durability of the system;

• Durability of the induced stress pattern.

In the construction field, the application of an imposed relative elastic deformation between the

structure and its restraints has traditionally been used.

In the special case of concrete sections, the imposed elastic deformation acts between the

section and the reinforcement, which behaves as an elastic internal restraint. The external

restraints can be statically determined or undetermined.

From the technology point of view, prestressing poses a few challenges, among which the

most difficult one is to introduce a stress pattern that remains unaltered over time.



THE INTRODUCTION OF PRESTRESSING IN STRUCTURAL 

SYSTEMS

Arco a due cerniere

𝐇 = −
𝛅𝟎
𝛅𝐜

= 𝐇𝐑

𝐌 𝐳 = 𝐌𝐠 𝐳 − 𝐇𝐑 ∙ 𝐲(𝐳)

𝐇 = −
𝛅𝟎

𝛅𝐜 + 𝛅𝐬
= 𝐇𝐑𝛚

𝛚 =
𝛅𝐜

𝛅𝐜 + 𝛅𝐬

∆𝐇 =
∆

𝛅𝐜 + 𝛅𝐬

𝐇𝐭𝐨𝐭 = 𝐇𝐑𝛚+
∆

𝛅𝐜 + 𝛅𝐬
≥ 𝐇𝐑

∆≥ 𝐇𝐑 𝟏 − 𝛚 𝛅𝐜 + 𝛅𝐬 = 𝐇𝐑𝛅𝐜
𝟏 − 𝛚

𝛚

In assenza di carico: 𝐇𝐭𝐨𝐭 =
∆

𝛅𝐜 + 𝛅𝐬

Unloaded arch H =0

Two hinges arch Tied arch Load

Load + imposed deformation

Unloaded arch

∆



THE INTRODUCTION OF PRESTRESSING IN R.C. BEAMS

Specifically regarding reinforced concrete elements, prestressing is applied using the following techninques:

• Pre-tensioning (using bonded tendons);

• Post-tensioning, using tendons that are initially unboned and later bonded by means of injection (injected tendons

post-tensioning);

• Post-tensioning by means of unbonded tendons. The tendons can be placed inside or outside the r.c. elements, in 

sheaths protected by a layer of grease.



THE TWO ALTERNATIVE APPROACHES TO POST-

TENSIONING

A) EXTERNAL FORCE

This approach is useful with particular reference
to the analysis of unbonded cables at ultimate 
limit state.

B) TRANSFORMED M-N INTERACTION DIAGRAM

The basic parallelogram (PQRS) is transforemed in 
the (P’Q’R’S’) one by applying the vector with 
components (-Np, -Npep).

This method can be used for sectional analysis of 
pretrensioned elemets at ultimate.

Ԧ𝑆(𝑀𝐸𝑘 +𝑁𝑃𝑒𝑃, 𝑁𝑃)



THE 4 VERIFICATION CLASSES

1) σC ≤ 0 – Integral prestressing

2) σct ≤ fct, f′ct – Prestressing with limited tension,

3) M ≥ Mcr fct, Np , Rare combination – Partial prestressing, control of cracking

4) wsk ≤ ഥwRk – Ordinary reinforced concrete: cracking limit state

න
𝐲𝐧

𝐡

𝛔𝐜 𝐲 𝐛 𝐲 𝐝𝐲 = ഥ𝛔𝐬𝐀𝐬

Ultimate

Load

Yielding

Cracking

Decompression

R.c. cracking

Balanced

Reinforced concrete

Prestressed concrete

No tension

material

Tension stiffening

effect

Displacement



LONG TERM EFFECTS AND SECTIONAL SERVICE 

STRESS LIMIT STATE

• Some Code prescriptions:

𝐭 = 𝐭𝟎 𝐭 = ∞
𝐟𝐜 = 𝟎. 𝟔 ∙ 𝐟𝐜𝐤; 𝐟′𝐜 = 𝟎. 𝟒𝟓 ∙ 𝐟𝐜𝐤, (𝐃𝐌 𝟐𝟎𝟏𝟖)
𝐟𝐜𝐭 = 𝟎. 𝟏 ∙ 𝐟𝐜𝐤; 𝐟′𝐜𝐭 = 𝟎. 𝟎𝟕 ∙ 𝐟𝐜𝐤 (𝐆𝐨𝐨𝐝 𝐩𝐫𝐚𝐜𝐭𝐢𝐜𝐞)
𝐟𝐜𝐭 = 𝟎 − 𝐍𝐨 𝐭𝐞𝐧𝐬𝐢𝐨𝐧 (𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥 𝐩𝐫𝐞𝐬𝐭𝐫𝐞𝐬𝐬𝐢𝐧𝐠)

ACI Code, t = t0:
𝐟𝐜 = 𝟎. 𝟔 ∙ 𝐟𝐜𝐤 (𝐏𝐫𝐞 − 𝐭𝐞𝐧𝐬𝐢𝐨𝐧𝐢𝐧𝐠) 𝐟𝐜
= 𝟎. 𝟓𝟓 ∙ 𝐟𝐜𝐤 (𝐏𝐨𝐬𝐭 − 𝐭𝐞𝐧𝐬𝐢𝐨𝐧𝐢𝐧𝐠)
𝐟𝐜𝐭 = 𝟏. 𝟒 𝐌𝐏𝐚; 𝒇𝐜𝐭 = 𝟎. 𝟐𝟓 ∙ 𝐟𝐜𝐤 (𝐮𝐧𝐛𝐨𝐧𝐝𝐞𝐝 𝐜𝐚𝐛𝐥𝐞𝐬)

𝐟𝐜𝐭,𝐦𝐚𝐱 = 𝟎. 𝟔𝟐𝟓 ∙ 𝐟𝐜𝐤 (𝐠𝐫𝐨𝐮𝐭𝐞𝐝 𝐜𝐚𝐛𝐥𝐞𝐬)

ACI Code, t = :
𝐟𝐜 = 𝟎. 𝟒 ∙ 𝐟𝐜𝐤
𝐟𝐜𝐭 ≤ 𝟎. 𝟓 ∙ 𝐟𝐜𝐤 (𝐠𝐫𝐨𝐮𝐭𝐞𝐝 𝐜𝐚𝐛𝐥𝐞𝐬)

𝐟𝐜𝐭 ≤ 𝟎. 𝟐𝟓 ∙ 𝐟𝐜𝐤 (𝐬𝐞𝐯𝐞𝐫𝐞 𝐞𝐱𝐩𝐨𝐬𝐮𝐫𝐞 𝐜𝐥𝐚𝐬𝐬𝐞𝐬)
𝐟𝐜𝐭 = 𝟎 (𝐮𝐧𝐛𝐨𝐧𝐝𝐞𝐝 𝐭𝐞𝐧𝐝𝐨𝐧𝐬)

𝐃𝐨𝐦𝐢𝐧𝐢𝐨 𝐏,𝐐, 𝐑, 𝐒 , 𝐟𝐜, 𝐟𝐜𝐭, 𝐭 = 𝐭𝟎

𝐃𝐨𝐦𝐢𝐧𝐢𝐨 𝐏′, 𝐐′, 𝐑′, 𝐒′ , 𝐟′𝐜, 𝐟′𝐜𝐭, 𝐭 = ∞



Behaviour of concrete under uniaxial stress: 

CONCRETE: CONSTITUTIVE LAWS



• The constitutive laws used in the the design of cross sections for bending and axial load 

can be of three different types:

a) Exponential function

b) Bilinear function

c) Rectangular stress distribution

3

CONCRETE: DESIGN CONSTITUTIVE LAWS FOR 

SECTIONAL ANALYSIS

2



(a) Exponential function: 

σc = fcd ∙ 1 − 1 −
εc

εc2

n
; 0 ≤ 𝜀𝑐 ≤ 𝜀𝑐2

σc = fcd ;   𝜀𝑐2 ≤ 𝜀𝑐 ≤ 𝜀𝑐𝑢2

Where:

𝜀𝑐2 = 2%0 , 𝑓𝑐𝑘 ≤ 50 𝑀𝑃𝑎

𝜀𝑐2 = 2%0 + 0.085 ∙
𝑓𝑐𝑘 − 50 0.53

1000
; 𝑓𝑐𝑘 > 50 𝑀𝑃𝑎

n = 2 𝑓𝑐𝑘 ≤ 50 𝑀𝑃𝑎

𝑓𝑐𝑘 > 50 𝑀𝑃𝑎

CONCRETE: DESIGN CONSTITUTIVE LAWS FOR 

SECTIONAL ANALYSIS

In the new IBC n = 2

2



3

ynyn 3

(c) Rectangular stress distribution: 

𝜆 = 0.8 ,   𝑓𝑐𝑘 ≤ 50 𝑀𝑃𝑎

𝜆 = 0.8 −
𝑓𝑐𝑘−50

400
,   50𝑀𝑃𝑎 ≤ 𝑓𝑐𝑘 ≤ 90 𝑀𝑃𝑎

𝜂 = 1 ,   𝑓𝑐𝑘 ≤ 50 𝑀𝑃𝑎

𝜂 = 1 −
𝑓𝑐𝑘−50

200
,   50𝑀𝑃𝑎 ≤ 𝑓𝑐𝑘 ≤ 90 𝑀𝑃𝑎

CONCRETE: DESIGN CONSTITUTIVE LAWS FOR 

SECTIONAL ANALYSIS



(b)(a)

CONCRETE: IDEALIZED CONSTITUTIVE LAWS



STEEL CONSTITUTIVE LAW

Stress-strain diagrams

k

k
Reinforcing steel bars

Bars

Strands, wires



REINFORCING STEEL: Stress-strain diagrams



PRESTRESSING STEEL

• This clause applies to wires, bars and strands used as prestressing tendons in concrete 

structures.

• The prestressing tendons (wires, strands and bars) shall be classified according to: 

(i) Strength, denoting the value of the 0.1% proof stress (fp0,1k) and the value of the 

ratio of tensile strength to proof strength (fpk /fp0.1k) and elongation at maximum load 

(εuk) .

(ii) Class, indicating the relaxation behaviour .

(iii) Size. 

(iv) Surface characteristics.

• The design value for the modulus of elasticity, Ep may be assumed equal to 205 GPa for  

wires and bars. The actual value can range from 195 to 210 GPa, depending on the 

manufacturing process.

• The design value for the modulus of elasticity, Ep may be assumed equal to 195 GPa

for strand. The actual value can range from 185 GPa to 205 GPa.

• The mean density of prestressing tendons for the purposes of design may normally be 

taken as 7850 kg/m3

• The values given above may be assumed to be valid within a temperature range 

between -40°C and +100°C for the prestressing steel in the finished structure. 



The 0.1% proof stress (fp0.1k ) and the specified value of the tensile strength (fpk ) 

are defined as the characteristic value of the 0.1% proof load and the 

characteristic maximum load in axial tension respectively, divided by the nominal 

cross sectional area, as shown in this figure: 

Stress-strain diagram for typical prestressing steel (absolute values are shown for 

tensile stress and strain)

PRESTRESSING STEEL



The design value for the steel stress can be taken as:

fpd = fp0,1k/γS

For cross-section design, either of the following assumptions may be 

made : 

- an inclined branch, with a strain limit εud. Or 

- a horizontal top branch without strain limit.

εud = 0.02 

fp0.1k /fpk = 0.9

PRESTRESSING STEEL



THE ULTIMATE LIMIT STATE FOR BENDING AND AXIAL FORCE

• Prestressed Concrete – Unbonded cables

σp = σp
0 = Ep ∙ εp

0

Translational Equilibrium:

−ηfcd ∙ Ac
∗ = −σp

0 ∙ Ap → Ac
∗ =

σp
0AP

ηfcd

Rotational Equilibrium:

σp
0 ∙ Ap ∙ h

∗ = MEd

For rectangular sections:

Introducing the non-dimensional quantities:

ξ =
yn
h
; αp =

σp
0

fyd
; ωp =

fydAp

bh ∙ ηfcd
; μEd =

MEd

bh2 ∙ ηfcd
; δp =

dp

h

λξ = αpωp

αpωp ∙ δp −
αpωp

2
= μEd

λbyn =
σp
0Ap

ηfcd

σp
0 ∙ Ap ∙ dp − yc

∗ = MEd

yc
∗ = Τλyn 2



ULTIMATE LIMIT STATE: SECTIONAL CAPACITY FOR 

UNBONDED TENDONS AND ORDINARY REINFORCEMENT

A) UNBONDED CABLES – RECTANGULAR 
SECTIONS

B) UNBONDED CABLES, THE EFFECT OF THE 
ORDINARY REINFORCEMENT

To increase sectional capacity at ultimate,
ordinary reinforcement (s) can be conveniently
added. In this way, the safety level and the
sectional ductility can be significantly increased.

λξ = αpωp +ωs(1 − β)

αpωp ∙ δp −
λξ

2
+ ωs ∙ δ −

λξ

2
− β δ′ −

λξ

2
= μEd

ωs =
Asfyd

ηfcdbh

As
′ = βAs



• Prestressed concrete – Bonded cables

When the cable is bonded, the steel tension varies when varying the distribution of strains at ultimate.

We so distinguish various zones:

• → the steel is at yielding state

• → the steel is in the elastic state

•

To obtain the position of        we write:

ULTIMATE BENDING LIMIT STATE

𝜺𝒄𝒖
𝜺𝒄𝟎

𝜺𝑷∞ ∆𝜺
𝜺𝑷𝒚

𝒚𝒏
𝟎

e As

Fig. 9

𝜺𝑷𝒚 𝜺𝒔𝑷

𝝈𝒔𝑷

𝒇𝒚𝒅

0 ≤ 𝑦𝑛 ≤ 𝑦𝑛
0

𝑦𝑛
0 ≤ 𝑦𝑛 ≤ ℎ

∆𝜀 ≥ 𝜀𝑃𝑦 − 𝜀𝑃∞

∆𝜀 ≤ 𝜀𝑃𝑦 − 𝜀𝑃∞

𝑦𝑛 → ∞; 𝜀𝑠𝑃 = 𝜀𝑃∞ + 𝜀𝑐0

yn
0

𝜀𝑐𝑢

𝑦𝑛
0 =

∆𝜀

𝑑 − 𝑦𝑛
0 𝑠𝑜 𝑡ℎ𝑎𝑡

𝑦𝑛
0

ℎ
= 𝜉0 = 𝛿 ∙

1

1 +
∆𝜀
𝜀𝑐𝑢



• Prestressed concrete – Bonded cables

ULTIMATE BENDING LIMIT STATE

∆𝜀 = 𝜀𝑝𝑦 − 𝜀𝑝
0 = 𝜀𝑝𝑦 1 − 𝛼𝑝 , 𝛼𝑝 =

𝜀𝑝
0

𝜀𝑝𝑦

𝜉0 =
𝛿

1 + 𝑘𝑝 1 − 𝛼𝑝
, 𝑘𝑝 =

𝜀𝑝𝑦

𝜀𝑐𝑢

𝜆𝜉 = 𝜔𝑝

𝜔𝑝 𝛿𝑝 −
𝜔𝑝

2
= 𝜇𝐸𝑑 ; 𝜔𝑝 =

𝑓𝑦𝑝𝐴𝑝

𝑏ℎ ∙ 𝜂𝑓𝑐𝑑
; 𝜔𝑝,𝑙𝑖𝑚 = 𝜆𝜉0 =

𝜆𝛿

1 + 𝑘𝑝 1 − 𝛼𝑝
; 𝜇𝐸𝑑 =

𝑀𝐸𝑑

𝑏ℎ2 ∙ 𝜂𝑓𝑐𝑑

If 𝜔𝑝 ≤ 𝜔𝑝,𝑙𝑖𝑚,  𝜉 ≤ 𝜉0 the reinforcement is in the yielded state, eqs. (1) have to be used 

If 𝜔𝑝 > 𝜔𝑝,𝑙𝑖𝑚

𝜎𝑝 = 𝐸𝑝 ∙ 𝜀𝑝
0 + ∆𝜀 = 𝐸𝑝 ∙ 𝜀𝑝

0 + 𝜀𝑐𝑢
𝑑𝑝 − 𝑦𝑛

𝑦𝑛

𝛽 =
𝜎𝑝

𝑓𝑦𝑝
= 𝛼𝑝 +

1

𝑘𝑝

𝛿𝑝 − 𝜉

𝜉
=

𝑘𝑝𝛼𝑝 − 1 𝜉 + 𝛿𝑝

𝑘𝑝𝜉

−𝜆𝜉 + 𝛽𝜔𝑝 = 0

𝛽𝜔𝑝 𝛿𝑝 −
𝛽𝜔𝑝

2
= 𝜇𝐸𝑑

Introducing β in the first of eqs. (2) we reach:

𝜉2 −
𝜔𝑝

𝜆𝑘𝑝
𝑘𝑝𝛼𝑝 − 1 𝜉 −

𝜔𝑝𝛿𝑝

𝜆𝑘𝑝
= 0

(1)

(2)



ULTIMATE BENDING LIMIT STATE



ULTIMATE BENDING LIMIT STATE



ULTIMATE BENDING LIMIT STATE



Ducts

Live end and dead end  

Steel strand

Multi strand stressing jacks

BASIC ASPECTS OF PRESTRESSING TECHNOLOGY

Wedges

Bars



Steel strand

Monostrand stressing jacksLive end, dead end and coupler

Plant floor

BASIC ASPECTS OF PRESTRESSING TECHNOLOGY



BASIC ASPECTS OF PRESTRESSING TECHNOLOGY



CREEP EFFECTS

Creep law

ε = ൗ
σ0

J(t, t0)
; ε = න

0

t

dσ(t′)J(t, t′)

J t, t0 =
1

E t0
1 + φ t, t0

Relaxation law 

σ = ε0R t, t0 ; σ = න
0

t

dε t′ R(t, t′)

R t, t0 = E t0 1 − ρ t, t0

Convolution Integral

׬
0

t
𝜕R t′, t0

𝜕t′
J t, t′ dt′ = 1

First Theorem

S = Se

σ = σe
ε = εe(1 + φ)

s = se(1 + φ)

Second Theorem

s = se

ε = εe
σ = σe(1 − ρ)

S = Se(1 − ρ)

Algebraic form of creep law

ε =
σ

E
1 + χφ +

σ0
E

1 − χ φ

Algebraic form of relaxation law

σ =
Eε

1 + χφ
− σ0 ∙

1 − χ φ

1 + χφ



CREEP EFFECTS

Delayed Restratint

ε = න
t0
∗

t

dXδ11J = −δ10(φ − φ∗)

X = Xeξ

M = M0 + ξ ∙ Xe ∙ fM1

Simply supported M z =
4qL2

8
−
z2

L2
+
z

L

Iperstatic effect M z = −ξ
qL2

8

z

L

Resultant moment
M z

qL2

8

= 4 −ζ2 + ζ − ξζ ; ξ=0.7



DELAYED BEHAVIOUR OF P.C. ELEMENTS

• Prestressing force over time:

𝛅𝐜 𝟏 + 𝛘𝛗 + 𝛅𝐬 𝐍 + 𝛅𝐜𝛗 𝟏 − 𝛘 𝐍𝟎 =
𝐍𝐩𝛅𝐬

𝐍𝐩 𝛅𝐜 + 𝛅𝐬
𝝎 =

𝜹𝒄

𝜹𝒄+𝜹𝒔
=

𝑼𝒄

𝑼𝒄+𝑼𝒔

𝐍 = 𝐍𝐩 𝟏 − 𝛚 𝟏 −
𝛚𝛗

𝟏 + 𝛘𝛚𝛗

𝐍 = 𝐍𝐩 𝟏 −
𝛚𝛗

𝟏 + 𝛘𝛚𝛗

Post-tensioned
elements

Pre-tensioned
elements

Post-tensioned
elements

• For integral prestressing, at t=, it results:

𝛚 =
𝛌𝛂𝐞𝛒𝐬𝐩

𝟏 + 𝛌𝛂𝐞𝛒𝐬𝐩
; 𝛂𝐞 =

𝐄𝐜
𝐄𝐬

; 𝛌 = 𝟏 +
𝐞𝟐

𝐫𝟐
; 𝛒𝐬𝐩 =

𝐀𝐬𝐩

𝐀𝐜
=

𝛚

𝟏−𝛚 𝛂𝐞𝛌

𝐞𝐧
𝐢 = 𝐞𝐧

𝐬 ; 𝛌 =
𝟒

𝟑
; 𝛒𝐬𝐩 =

𝟎. 𝟕𝟓𝛚

𝟏 −𝛚 𝛂𝐞
𝐍𝐩 = 𝒌𝟏𝐟𝐜𝐤

𝐀𝐜

𝟐
= 𝛔𝐩𝐀𝐬

𝛔𝐩 =
𝒌𝟏𝐟𝐜𝐤
𝟐𝛒𝐬𝐩

(1)

(2)
(3)

(4)

𝐍𝐩

𝐀𝐜
𝟏 +

𝐞𝐧
𝐢

𝐞𝐧
𝐬

= −
𝐌

𝐖𝒊
= −𝒌𝟏𝐟𝐜𝐤;

• For the rectangular section, it can be written:

Pre-tensioned elements

𝛿𝑐 =
1

(𝐸𝑐𝐴𝑐)
+

𝑒2

(𝐸𝑐𝐼𝑐)
=

1

𝐸𝑐𝐴𝑐
(1 +

𝑒2

𝑟2
)

𝛿𝑠 =
1

(𝐸𝑠𝐴𝑠)

𝐍𝐩 = −
𝒌𝟏𝒇𝒄𝒌𝑨 𝒚𝒔

𝒉

𝝈𝐩 = −
𝒌𝟏𝒇𝒄𝒌𝑨 𝒚𝒔

𝒉𝝋𝒔𝒑



THE VARIATION OF THE PRESTRESSING FORCE

k1=0.6



THE TOTAL VARIATION

∆𝐍 = 𝐍𝐏 𝟏 + 𝛂𝐬𝐡
𝛃𝐬𝐡
𝛗

+ 𝛂𝐑 𝟏 −𝛚 − 𝛂𝐠 𝟏 − 𝛚 𝐠 𝛗,𝛚

𝛂𝐬𝐡
𝐄𝐀 𝐜

𝐍𝐩
∙
𝛆𝐬𝐡
∞

𝛌
𝛃𝐬𝐡 =

𝛆𝐬𝐡 𝐭

𝛆𝐬𝐡 ∞
𝛂𝐑 =

∆𝐍𝐫
𝟎

𝐍𝐩

𝛂𝐠 =
𝐌𝐠

𝛌𝐞𝐍𝐩
𝛌 = 𝟏 +

𝐞𝟐

𝐫𝟐
𝐠 𝛗,𝛚 =

𝛚𝛗

𝟏 + 𝛘𝛚𝛗

• The design calculations for the losses due to relaxation of the prestressing steel should be based on the value of ρ1000, the 

relaxation loss (in %) at 1000 hours after tensioning and at a mean temperature of 20 °C, with pi / fpk = 0.7.

• Model Code 90

Three clauses of relaxation are defined:

1. Normal relaxation characteristics for wires and strands

2. Imposed relaxation characteristics for wires and strands

3. Relaxation characteristic for bars

A time variation up to 1000 h is given in the following table:

For an extimate of the relaxation up to 30 years the following formula can be applied:
𝜌 𝑡 = 𝜌1000

𝑡

1000

𝑘

𝑘 = 𝑙𝑜𝑔
𝜌1000
𝜌100

For the above mentioned clauses the relaxation losses ρ1000 % at 

1000 h, varying the level of initial prestressing p0 / fptk are given 

in the next figure: 



THE TOTAL VARIATION

• EC2

This document defines the values of 1000 in the following way:

- Class 1: 1000 = 8%

- Class 2: 1000 = 2.5%

- Class 3: 1000 = 4%

connected to a ratio pi / fpk = 0.7

Introducing the time-variation of the relaxation losses for different levels of temperature:



THE TOTAL VARIATION

𝛆𝐬𝐡 𝐭 = 𝛃𝐬𝐡 ∙ 𝛆𝐬𝐡 ∞ 𝐠 𝛗,𝛚 =
𝛚𝛗

𝟏 + 𝛘𝛚𝛗

𝛗 = 𝟏

𝛗 = 𝟐

𝛗 = 𝟑

𝛚

𝒈



PRESTRESSING LOSS DUE TO FRICTION

to the exponential part, the term

has to be added, so obtaining

𝐝𝐍

𝐝𝛝
+ 𝛍𝐍 = 𝟎

𝐍 = 𝐍𝟎𝐞
−𝛍𝛝

𝐜 = −𝛍𝐤𝐱

𝐍 = 𝐍𝟎𝐞
−𝛍 𝛝+𝐤𝐱

𝟎. 𝟎𝟎𝟓 ≤ 𝐤 ≤ 𝟎. 𝟎𝟏 𝐫𝐚𝐝/𝐦



REDUNDANT STRUCTURES: EQUIVALENT LOADS

• The equilibrium of the cable:

𝐍𝐏~𝐍𝟎𝐩

𝐕𝟏𝐩 = 𝐍𝐩𝐭𝐠𝛂 = 𝐍𝐩 ∙ 𝐞′(𝟎)

𝐌 𝐳 = 𝐍𝐩 ∙ 𝐞𝟏 − 𝐞 𝐳 + 𝐕𝟏𝐩 ∙ 𝐳 − න
𝟎

𝐳

𝐍𝐩𝐞
′′ ത𝐳 ത𝐳 − 𝐳 𝐝ത𝐳 =

= 𝐍𝐩 ∙ 𝐞𝟏 − 𝐞 𝐳 + 𝐍𝐩 ∙ 𝐞
′ 𝟎 ∙ 𝐳 − 𝐍𝐩𝐞

′ ത𝐳 ത𝐳 − 𝐳
𝟎

𝐳
−න

𝟎

𝐳

𝐍𝐩𝐞
′′ ത𝐳 𝐝ത𝐳 =

= 𝐍𝐩 ∙ 𝐞𝟏 − 𝐞 𝐳 + 𝐍𝐩 ∙ 𝐞
′ 𝟎 ∙ 𝐳 − 𝐍𝐩 ∙ 𝐞

′ 𝟎 ∙ 𝐳 + 𝐍𝐩 ∙ 𝐞 𝐳 − 𝐞𝟏 = 𝟎

𝐕 𝐳 = 𝐕𝟏𝐩 −න
𝟎

𝐳

−𝐍𝐩𝐞
′′ ത𝐳 𝐝ത𝐳 = 𝐍𝐩 ∙ 𝐞

′ 𝟎 + 𝐍𝐩 ∙ 𝐞
′(𝐳) − 𝐞′ 𝟎 = 𝐍𝐩 ∙ 𝐞

′(𝐳)

• The funicular equilibrium of cables with small curvature:

𝟐𝐍
𝐝𝛝

𝟐
= 𝐩𝐫𝐝𝛝 𝐩 =

𝐍

𝐫

𝟏

𝐫
= −𝐞′′(𝐳) 𝐪 𝐳 = −𝐍𝐞′′(𝐳)

𝐝

𝐝𝛝
𝐍𝐭𝐠𝛝 𝐝𝛝 = 𝐪𝐫𝐝𝛝

𝐭𝐠𝛝 ≅ 𝛝 → 𝐩𝐫𝐝𝛝 = 𝐪𝐫𝐝𝛝 → 𝐩 ≅ 𝐪



REDUNDANT STRUCTURES: EQUIVALENT LOADS

• The equilibrium of the 
beam:

𝐌 𝐳 = 𝐍𝐩 ∙ 𝐞𝟏 + 𝐕𝟏𝐩 ∙ 𝐳 + න
𝟎

𝐳

−𝐍𝐩𝐞
′′ ത𝐳 ത𝐳 − 𝐳 𝐝ത𝐳 =

= 𝐍𝐩 ∙ 𝐞𝟏 + 𝐍𝐩 ∙ 𝐞
′ 𝟎 ∙ 𝐳 − 𝐍𝐩 ∙ 𝐞

′ 𝟎 ∙ 𝐳 + 𝐍𝐩 ∙ 𝐞 𝐳 − 𝐞𝟏 = 𝐍𝐩 ∙ 𝐞 𝐳

𝐕 𝐳 = 𝐌′ 𝐳 = 𝐍𝐩 ∙ 𝐞′ 𝐳

𝐪 = −𝐍𝐩 ∙ 𝐞′′ 𝐳

The system of loads Np; V1p; Np; V2p; qp z ; Npe1; Npe2 is self balanced and balances the one

due to external loads, thus improving structural response.



M z = Mq
0 z + M0

0 z + aT z ∙ X + Ne

δM z = aTδX

0 = δXTන
s

a
M z

EI
dz = δXTන

s

a aT X + Ne
dz

EI
+ න

s

aMq
0 z

dz

EI
+න

s

aM0
0 z

dz

EI

න
s

a aT
dz

EI
= Fe; න

s

aMq
0 z

dz

EI
=δ0q; න

s

aM0
0 z

dz

EI
= δ0M

Fe X + Ne + δ0q + δ0M = 0 → X = −Ne + Xq + XM ; Xq = −Fe
−1δ0q ; XM = −Fe

−1δ0M

M z = Mq
0 z + M0

0 z + aT z ∙ Xq + XM = Mq z + M0(z)

Mq z = Mq
0 z + aT z Xq

M0 z = M0
0 z + aT z XM

e z = e0 z + aTe + eM z

q z = −Ne0
′′
z

M0
0 z = NeM(z)

eM z = e0 1 −
z

L

eM z = 0

eM z = en z
z

L

I span

II → (n − 1) span

n span

If in a continuous beam we change the eccentricity of the 

cable at the internal supports maintaining constant the 

eccentricity of the two extreme supports and the curved form 

of the cable, the bending moment in the beam remains 

unchanged and results:

M z = Mq z + M0(z)

where Mq z , M0(z) are the bending moments due to the 

distributed loads and to the moments at the extreme points.

In particular, if:

Ne = Xq + XM → ei =
Xqi+XMi

N

the bending moment in the beam coincides with the one due 

to the cable eccentricity, i.e M z = Ne z , no reactions arise in 

the continuity supports and the cable is called concordant.

THE  LINEAR TRANSFORMATION THEOREM



THE  LINEAR TRANSFORMATION THEOREM

e z = 4e0 −
z2

L2
+
z

L

e1 z = 4e0 −
z2

L2
+
z

L
+ e

z

L

e2 z = 4e0 −
z2

L2
+
z

L
+ e

e3 z = 4e0 −
z2

L2
+
z

L
+ e 1 −

z

L

qN = −N ∙ −
8e0
L2

=
8Ne0
L2

X = −
qL2

10
− Ne = −

qL2

10
−
qL2

8e0
∙ e N =

qNL
2

8e0

If e = −e0 → X = −
qL2

10
+
qL2

8
→ M = Ne + X

z

L
= −

qL2

8
e z +

qL2

40

z

L

If
e

e0
=

8

10
→ X = 0 → M = Ne



THE DELAYED RESTRAINT

a) ROTATIONAL DELAYED RESTRAINT ∆θ0 = θ0
qN

+ θ0
Ne0

+ Neδ11 φ t, t0 − φ t0
∗ , t0

∆θX = න
t0
∗

t

δ11dX t′ ∙ E t0 ∙ J(t, t′)

Compatibility:

∆θ0 + ∆θX = 0

න
𝑡0
∗

𝑡

𝑑𝑋 𝑡′ ∙ 𝐸 𝑡0 ∙ 𝐽 𝑡, 𝑡′ = −
𝜃0

𝑞𝑁

𝛿11
−
𝜃0

𝑁𝑒0

𝛿11
−𝑁𝑒 ∙ 𝜑 𝑡, 𝑡0 − 𝜑 𝑡0

∗, 𝑡0

𝑋 = 𝑋𝑒
𝑞𝑁 + 𝑋𝑒

𝑁𝑒0
−𝑁𝑒 ∙ න

𝑡0
∗

𝑡 𝜕𝜑 𝑡′, 𝑡0
𝜕𝑡′

∙
𝑅 𝑡, 𝑡′

𝐸 𝑡0
𝑑𝑡′

Indicating by:

ξ=න
t0
∗

t 𝜕φ t′, t0
𝜕t′

∙
R t, t′

E t0
dt′ appoximately ξ=

φ t, t0 − φ t0
∗ , t0

1 + χ t, t0
∗ φ(t, t0

∗)

The bending moment so becomes:

M = M0
(qN) z + M0

(Ne0) z + Xe
(qN)fM2

z ∙ ξ+Xe
Ne0 fM2 z ∙ ξ+NefM2

z ∙ (1 − ξ)

fM2 z = Τz L

Remembering that:

M0
(qN) z + Xe

(qN)fM2
z = Me

(qN) z → Xe
(qN)fM2

z = Me
(qN)(z) − M0

(qN) z

M0
(Ne0) z + Xe

(Ne0)fM2
z = Me

(Ne0) z → Xe
(Ne0)fM2

z = Me
(Ne0) z − M0

(Ne0) z

We write:

M = M0
(qN) z 1 − ξ + Me

(qN) z ∙ ξ + M0
Ne0 z 1 − ξ + Me

Ne0 z ξ+NefM2
z ∙ (1 − ξ)

In the elastic stage ξ=1: 

M = Me
(qN) z + Me

Ne0 z (theorem of linear transformations)



THE DELAYED RESTRAINT

a) ROTATIONAL DELAYED 

RESTRAINT



THE DELAYED RESTRAINT

b) TRANSLATIONAL ELASTIC RESTRAINT

b.1) Curved parabolic cable

න
t0
∗

t

dX ∙ δ11 ∙ E t0 = Npδ10 ∙ φ t, t0 − φ t0
∗ , t0

X = Np

δ10
δ11

න
t0
∗

t 𝜕 t′, t0
𝜕t′

∙
R t, t′

E t0
dt′ = Np

δ10
δ11

ξ = Np ∙ c ∙ ξ

δ10 =
L

EA
+
2emaxyiL

3EI
=

L

3E𝐴

3r2 + 2emaxyi
r2

δ11 =
L

EA
+
yi
2L

EI
=

L

E𝐴

r2 + yi
2

r2

c =
1

3

3r2 + 2emaxyi

r2 + yi
2

b.2) Horizontal strands

c =
δ10
δ11

δ10 =
L

EA
+
eyiL

2EI
=

L

E𝐴

r2 + eyi
r2

δ11 =
L

E𝐴

r2 + yi
2

r2

c =
r2 + eyi

r2 + yi
2

X = Npcξ

qN = −
8Npemax

L2



THE DELAYED RESTRAINT

In the two cases the components of action effects become:

N = NP + X = NP(1 − cξ)

M = NP ∙ e (1 − c
yi

e
ξ)

For a rectangular cross section, it results r2 = Τh2 12 ; yi = Τ1 2h and assuming emax = e = 0.4h we derive:

c =

1
3

3
12 + 2 ∙ 0.4 ∙ 0.5

1
12 + 0.52

= 0.65 parabolic cable c =

1
12 + 0.4 ∙ 0.5

1
12 + 0.52

= 0.85 (straight strand)

Assuming φ t, t0 = 2.5; φ t0
∗ , t0 = 0.9; φ t, t0

∗
t=∞ = 2 we derive the function:

ξ =
2.5 − 0.9

1 + 0.8 ∙ 2
= 0.615

So for the two cases we obtain:

N = NP 1 − 0.65 ∙ 0.615 = 0.6Np

M = Np 1 − 0.72 ∙ 0.615 ∙
0.5

0.4
𝑒𝑚𝑎𝑥 = 0.446𝑁𝑝𝑒𝑚𝑎𝑥

Parabolic cable

Straight strand
N = NP 1 − 0.85 ∙ 0.615 = 0.477Np

M = Np 1 − 0.88 ∙ 0.615 ∙
0.5

0.4
𝑒 = 0.323𝑁𝑝𝑒



SEGMENTAL STRUCTURES

a) Service Stage

Np

A
+

NP ep

Ws
≥
MEk

Ws

Ws

AP
= eni

Np eni + ep ≥ MEk

eni + ep ≥
MEk

Np
= ∆e decompression limit state

μ Np ≥ VEk shear limit state

0.5 ≤ μ ≤ 0.9 (UNI EN 1992-1-1)



SEGMENTAL STRUCTURES

b) Ultimate Limite State (CEB-FIB MODEL CODE 1990)

VRd = min
μ As ∙ fyd 1 + cotα sinα + Nd + 0.1Ak ∙ fcd /γRd

0.3 ∙ Aj ∙ fcd



THE PRESTRESSING OF BI-DIMENSIONAL ELEMENTS

𝑞𝑃𝑦𝑖 = −𝑁𝑝𝑦𝑖 Τ𝜕2𝑒𝑦𝑖(𝑥𝑙 , 𝑦) 𝜕𝑦2

𝑞𝑃𝑥𝑗 = −𝑁𝑝 Τ𝜕2𝑒𝑥𝑖(𝑥, 𝑦𝑙) 𝜕𝑥2

• Thin plates

NPyi

y

x

NPyi

NPxjNPxj

xl

yl eyi(xl, y)

exj(x, yl)

e0xj

e0yi



THE PRESTRESSING OF BI-DIMENSIONAL ELEMENTS

• Thin plates
The effects can be separated as:

a. Plate loaded by in-plane prestressing forces

b. Plate loaded by moments acting along the boundaries

c. Plate subjected to loads distributed along prestressing lines

The problem is uncoupled if

second order effects are 

negligible

NPyi

NPyi

NPxj

NPxj

NPyi  e0yi

NPyi  e0yi

NPxj  e0xj

NPxj  e0xj

qPyi

qPxj

(a) (b) (c)



THE PRESTRESSING OF BI-DIMENSIONAL ELEMENTS

For the external loading, the governing equation

is:

𝛻𝐼𝑉𝑤 =
𝑞

𝐷

There is no affinity between (1) and (2), so that

simplified analyses with the assumption of an

equivalent beam must be carfully evaluated.

In-plane forces

𝛻4 = 0
𝑁𝑥
𝑡
=
𝜕2

𝜕𝑥2

𝑁𝑦

𝑡
=
𝜕2

𝜕𝑦2

𝑁𝑥𝑦

𝑡
=

𝜕2

𝜕𝑥𝜕𝑦

Out-of-plane forces

𝛻4𝑤 = 0

𝑀𝑥 = −𝐷
𝜕2𝑤

𝜕𝑥2
+ 

𝜕2𝑤

𝜕𝑦2

𝑀𝑦 = −𝐷 
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2

𝑀𝑥𝑦 = 𝐷(1 − )
𝜕2𝑤

𝜕𝑥𝜕𝑦

(1)

(2)

M- (60%80%)

M- (50%70%)

M- (40%20%)

M- (50%30%)

EC2

Zona A

Zona B

A

B

A B

lx > ly

lx

ly

ly/2

ly/2



SHEAR LIMIT STATE 

• Service stage

𝛔𝐈 =
𝛔𝐩
𝟎

𝟐
+
𝟏

𝟐
𝛔𝐩
𝟎 𝟐

+ 𝟒𝛕𝟐 > 𝟎

𝛔𝐈𝐈 =
𝛔𝐩
𝟎

𝟐
−
𝟏

𝟐
𝛔𝐩
𝟎 𝟐

+ 𝟒𝛕𝟐 < 𝟎

𝐭𝐠
𝛂𝟐
𝟐

=
𝛕

𝛔𝐈𝐈

𝐭𝐠
𝛂𝟏
𝟐

=
𝛕

𝛔𝐈



SHEAR LIMIT STATE 

• Transverse prestressing

𝛔𝐈 =
𝛔𝐩
𝟎 + 𝛔𝐯

𝟐
+
𝟏

𝟐
𝛔𝐩
𝟎 − 𝛔𝐯

𝟐
+ 𝟒𝛕𝟐

𝛔𝐈𝐈 =
𝛔𝐩
𝟎 + 𝛔𝐯

𝟐
−
𝟏

𝟐
𝛔𝐩
𝟎 − 𝛔𝐯

𝟐
+ 𝟒𝛕𝟐

𝛔𝐈 = 𝟎 𝛔𝐩
𝟎𝛔𝐯 = 𝛕𝟐 ; 𝛔𝐯 =

𝛕𝟐

𝛔𝐩
𝟎

𝐭𝐠
𝛂𝟐
𝟐

=
𝛕

𝛔𝐈𝐈
=

𝛔𝐩
𝟎𝛔𝐯

𝟐 𝛔𝐩
𝟎 +𝛔𝐯

𝛔𝐩
𝟎

𝛂𝟐
𝟐

𝛔𝐈

𝛔

𝛕

𝛔𝐈𝐈

𝛂𝟐

𝛔𝒗

• Ultimate limit state, no tension material: 𝐕𝐑𝐝,𝐜 =
𝐈𝐛𝐰
𝐒

𝐟𝐜𝐭𝐝
𝟐 + 𝛔𝐜𝐩 ∙ 𝐟𝐜𝐭𝐝

𝛕𝐦𝐚𝐱 = 𝐟𝐜𝐭𝐝
𝟐 + 𝛔𝐜𝐩 ∙ 𝐟𝐜𝐭𝐝 𝛔𝐈 = 𝐟𝐜𝐭𝐝



SHEAR LIMIT STATE

Members without transverse reinforcement

VSd
∗ = VSd − Nsinα

VRdc =
0.18

γc
k 100ρlfck

1
3 + k1σcp bd

k1 = 1
200

d
≤ 2

ρl =
Asl
bwd

≤ 0.02

k1 = 0.15

σcp =
NEd

Ac
≤ 0.2fcd



SHEAR LIMIT STATE

Members with transverse reinforcement

tRdc =
τRdc
νfcd

=
cotgθ

1 + cotgθ

tRd,ss = ωsscotgθ

tRd,sl =
2.22

δ
ωsltgθ

tEd =
VEd − NPde

′ z

0.9bwd

ωss =
Assfyd

bwessνfcd

ωsl =
Aslfyd

bwhνfcd

δ =
d

h



CASE STUDIES



CASE STUDIES



CASE STUDIES – CONSTRUCTIONAL DETAILS



CASE STUDIES – CONSTRUCTIONAL DETAILS



CASE STUDIES – CONSTRUCTIONAL DETAILS



CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS



CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS



Standard Floor: lightened slab, h = 34 cm, 

prestressed with unbonded strands 

CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS



Standard Floor: lightened slab, h = 34 cm, 

prestressed with unbonded strands 

CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS



CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS

Structural Analysis of the Standard Floor



CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS

East Façade “Jump Deck” Floors



Joint Sections

CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS

The cantilevered prestressed concrete floor structures (“Jump-deck floors”)



CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS:

Structural Analysis for the ‘Jump deck Floor’

Structural analysis

considering

provisional joints

Service stage 

without joints



CASE STUDIES - REGIONE PIEMONTE HEADQUARTERS



CASE STUDIES – MEAZZA STADIUM IN MILAN



CASE STUDIES – MEAZZA STADIUM IN MILAN



Possibili percorsi di penetrazione dell’acqua

DEGRADING OF P.C STRUCTURES

STRUCTURAL AND NON-STRUCTURAL CAUSES OF DEGRADATION



DEGRADING AND FAILURE OF P.C STRUCTURES



DEGRADING AND FAILURE OF P.C STRUCTURES



DEGRADING AND FAILURE OF P.C STRUCTURES



DEGRADING AND FAILURE OF P.C STRUCTURES



DEGRADING AND FAILURE OF P.C STRUCTURES



A-A

Trefoli non 

protetti

Guaina in 

lamierinoMalta di 

iniezione

Tubo di iniezione (aperto)

Guaina impermeabilizzante

danneggiata all’estremità in

conseguenza dei lavori di

rifacimento del giunto

Tubo di 

iniezioneAcqua

Corrosione dei 

trefoli

Vuoto

Malta di iniezione di insufficiente qualità

Cavo 
Vuoto

B

B

A

Copriferro insufficiente, 

possibile degrado causato 

dall’acqua

Acqua + 

cloruri

B-B

A

LE CAUSE DEL DANNEGGIAMENTO DEI TREFOLI

DEGRADING AND FAILURE OF P.C STRUCTURES

Danneggiamento della guaina Fessurazione visibile 

parallela al cavo

Corrosione del 

lamierino



Le due configurazioni strutturali sono marcatamente differenti in termini di robustezza.

Armature sane

𝑀𝑅𝑑 = 𝑀𝑅𝑑,𝑝 +𝑀𝑅𝑑,𝑠

𝑉𝑅𝑑 = 𝑓𝑦𝑑𝐴𝑠𝑠
0.9𝑑

𝑒𝑠𝑠
𝑐𝑡𝑔𝜃

Armature di presollecitazione danneggiate

𝑀𝑅𝑑 = (𝑀𝑅𝑑,𝑝−𝛥𝑀𝑅𝑑,𝑝) + 𝑀𝑅𝑑,𝑠

𝑉𝑅𝑑 = 𝑓𝑦𝑑𝐴𝑠𝑠
0.9𝑑

𝑒𝑠𝑠
𝑐𝑡𝑔𝜃

𝑀𝑅𝑑 ≥ 𝑀𝐸𝑘

Armature sane

𝑀𝑅𝑑 = 𝑀𝑅𝑑,𝑝

𝑉𝑅𝑑 = 𝜇𝑓𝑐𝑑𝐴𝑐(𝑁𝑅𝑑,𝑝)

Armature di presollecitazione danneggiate

𝑀𝑅𝑑 = (𝑀𝑅𝑑,𝑝−𝛥𝑀𝑅𝑑,𝑝) ≤ 𝑀𝐸𝑘

𝑉𝑅𝑑 = 𝜇𝑓𝑐𝑑 ҧ𝐴𝑐(𝑁𝑅𝑑,𝑝−𝛥𝑁𝑅𝑑,𝑝) ≤ 𝑉𝐸𝑘

Assenza di 

collasso, possibili 

fessurazioni

Collasso per 

flessione  o 

per taglio

1

2

1

2

1 Cavo di post-tensione

Armatura ordinaria (continua)

2 Giunti ad attrito

Conci prefabbricati
Armatura ordinaria (interrotta)

DEGRADING AND FAILURE OF P.C STRUCTURES

Ac ഥAc



Modello 

strutturale

Evoluzione del meccanismo di collasso

Spostamenti verticali in funzione 

della riduzione della 

presollecitazione

Apertura delle fessure 

in funzione della 

riduzione della 

presollecitazione

DEGRADING AND FAILURE OF P.C STRUCTURES



CASE STUDIES: HIGHWAY BRIDGES

Adda Viaduct:
- 1260 m long, 20 spans;

- Lenght of the span: 60m, 75m, 90m;

- Depth: 5.40m-3.20m.



CASE STUDIES: HIGHWAY BRIDGES

Serio Viaduct:
- 930 m long, 16 spans;

- Lenght of the span: 60m;

- Depth: 3.20m.



CASE STUDIES: HIGHWAY BRIDGES

Oglio Viaduct:
- 6900 m long, 11 spans;

- Lenght of the span: 60m, 75m, 90m.

- Depth: 5.40m-3.20m.



Phase 1 Phase 2 Phase 3 Phase 4

Phase 5 Phase 6 Phase 7

…

…

CASE STUDIES: HIGHWAY BRIDGES

The installation of two

temporary supports at

the end piers is required: 

the provisional supports

are then removed after

the end of the 

construction



CASE STUDIES: HIGHWAY BRIDGES



CASE STUDIES: HIGHWAY BRIDGES

Depth: 3.20m

Depth: 5.40m



CASE STUDIES: HIGHWAY BRIDGES



CASE STUDIES: HIGHWAY BRIDGES



CASE STUDIES: HIGHWAY BRIDGES

Damage observed on the precast

element during the tensioning phase

N

N



CASE STUDIES: HIGHWAY BRIDGES

Damage observed on 

the precast element

during the tensioning

phase

Transverse rebar in the 

original executive 

drawings, there are no 

stirrups but only open 

reinforcement



Trasversal Section

Longitudinal Section

Reconstructed cover

CASE STUDIES: HIGHWAY BRIDGES

Strenghtening devices: steel

profiles welded to steel plates, 

prestressed by introducing

imposed relative elastic

displacements between them

and rigid restraints



CASE STUDIES: HIGHWAY BRIDGES

In the damaged segments the 

concrete was rebuilt by 

removing, using selective

hydro-demolition techniques, 

alle the damaged parts to the 

ordinary reinfocement



CASE STUDIES: HIGHWAY BRIDGES



CASE STUDIES: HIGHWAY BRIDGES



𝝎𝝋

𝟏 + 𝝌𝝎𝝋

𝝎 ∙ 𝟏 − 𝝎

𝟏 + 𝝌𝝎𝝋

𝝎

𝝎

𝟏 + 𝝌𝝎𝝋

CASE STUDIES: HIGHWAY BRIDGES



CASE STUDIES: HIGHWAY BRIDGES



CASE STUDIES: HIGHWAY BRIDGES

Cross section

geometry

Details

Prestressing 

reinforcement



CASE STUDIES: HIGHWAY BRIDGES

Vertical tension z  5MPa

Principal stress of 

tension  6MPa



CASE STUDIES: HIGHWAY BRIDGES

Vertical tension z  4.5MPa



Introduction of a 

prestressing force about

50% of the total deviation

force of the cable

CASE STUDIES: HIGHWAY BRIDGES

Principal stress of tension: 

- Zone A and B: local effect

due to linear elastic model

- Zone C: tension due to 

prestressing less tha 2 MPa

Vertical tension z < 2MPa



CASE STUDIES: HIGHWAY BRIDGES



Ultrasonic tests performed before

prestressing the cables

Ultrasonic tests performed after

prestressing the cables

CASE STUDIES: HIGHWAY BRIDGES



CASE STUDIES: HIGHWAY BRIDGES

New closed

stirrups

Cable

Section 16s

The equilibrium of the cables deviation forces

has been guarateed with a more efficient

distribution of stirrups with closed shape





CASE STUDIES: HIGHWAY BRIDGES

𝑆 t = S0 ∙ 1 − 𝜉 + Se ∙ ξ ξ t, t0, t0
∗ =

φ t, t0 −φ t0
∗ , t0

1 + χφ t, t0
∗



CASE STUDIES: HIGHWAY BRIDGES

Distribution of 

bending moments in 

the configuration with 

maximum cantilever 

span

Distribution of bending 

moments in the final

situation



CASE STUDIES: HIGHWAY BRIDGES

Control of the stresses at the top and at the bottom of the section:

Limit value of compression

Limit value of tension



1920: JE SUIS UN ARTISAN

1930: UNE REVOLUTION DANS LA TECHNIQUE DU BETON

1938: UNE REVOLUTION DANS L’ART DE BATIR

“MY TIME WILL COME...”

THE BEGINNING OF A WONDERFUL HISTORY



E. Freyssinet P. Sejournè

“JE SUIS UN ARTISAN”



( )
E

E =
1+k



“LES DEFORMATIONS DU BETON SOUS CHARGES 

SOUTENUES SONT ISOMORPHES”

 e
v=v 1+k

sh
ε=ε Deformation Imposeè (retrait) 

Pont De Veurdre (1910), Vichy

Pont de Plougastel (1925-30), Brest

THE LEARNINGS FROM VEURDRE AND PLOUGASTEL



( ) ( )c

c

e s

e

0 e s

c

s
s

E
E t = k<1

k

1+N
= =10

N 1+k

σ
=
σ

 


 



M

N

t

0W

t0

cσ A

THE ELASTIC MODULUS OF CONCRETE VARIES IN TIME

(k>1)



A FORWARD-LOOKING 

CONTRACTOR

E. Campenon

1930

1933-39

The dark years

THE INTRODUCTION OF PRESTRESSING: A 

DISCOURAGING AND DIFFICULT WAY



LINEAR VISCOELASTICITY AND EXTREME MODELS

a) The Non-Ageing model and the asymptotical solution

1 10 100 1000 10000

tempo [giorni]

0

0.5

1

1.5

2

2.5

3
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4
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E
2
8

fck= 50 N/mm2

RH = 80 %
2 Ac/u = 800 mm

t0= 3, 7, 14, 28, 90, 365, 730 giorni
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b) The Dischinger Ageing model

1 10 100 1000 10000
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RH = 80%
2Ac/u = 800 mm
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THE PROGRESS IN UNDERSTANDING THE DELAYED 

BEHAVIOUR OF CONCRETE



( ) ( )
0

,
t

sh
d t J t t   = +

Volterra and the theory of integral equation

( ) ( )
0

,
t

sh
d R t t   = −

THE MODERN FORMULATION OF MC HENRY



AFTER WWII AND THE TECHNOLOGICAL DEVELOPMENT



Franco Levi

Carlo Cestelli Guidi

Riccardo Morandi

Silvano Zorzi

Palavela, Torino

FIP Birth, 1952

CEB Birth, 1953

fib since 2000

Polcevera Bridge

Tagliamento Bridge

San Giuliano Viaduct

THE ITALIAN CONTRIBUTION



GERMANY

FRANCIA

Dickeroff

Rusch

Leonhardt

Finsterwalder

Campenon

Freyssinet

Guyon

Alimchandani (STUP- India)

THE EUROPEAN DEVELOPMENT AFTER WWII



• The four verification classes

• The prestressing steel

• The anchorage devices

• The sectional optimization

• The ultimate capacity

• The shear resistance

• Limit State of Deformation

• The redundant structures

• The concordant cables and the theorems for continuous beams

• The great problem of the general solution of the delayed behaviour

• The protection against degrading and steel corrosion

THE OPEN PROBLEMS IN PRESTRESSING



• Integral Solution

• Interaction between prestressing and normal

steel

• Skew bending

• Special Effects (warping torsion)

THE OPEN PROBLEMS IN PRESTRESSING
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c s c
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K
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ii

Ω ω

= Coupling Matrix

= Modal Matrix

= Spectral Matrix

THE THEORETICAL FORMULATION

Systems of Volterra Integral Equations. The modal transformation of the 

unknowns. Canonical forms. The reduced relaxation functions.

AT LAST: THE SOLUTION
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“MY TIME WILL COME … ”



R. Strauss: Don Juan

N. Rimskij-Korsakov: Sherazade

A. Dvorak: VIII Symphony

P.Chaikovskij: IV Symphony

C. Frank: Symphony in D minor

1888: A UNIQUE YEAR FOR SYMPHONIC MUSIC



1889: A TITAN AND A DETESTABLE “ANDANTE”

“Blumine” 

second

movement of

G. Mahler I 

Symphony in 

D major



1968: JOHANNESBURG AND NEW HAVEN: THE PEAK OF 

AN IDEA AND AN EXQUISITE “ANDANTE”

Second performance in the same version of 1889, after the discovery of the long lost second

movement “Blumine” N. Haven, 1968.

The critics: Blumine is an exquisite “Andante” and it is time will be restored in the fascinating

mahlerian landscape with the posthorn of the III Symphony, the “Adagietto” of the Fifth and 

the amorous guitar of the Seventh…



“THE WORLD LISTENS”

Stolma Bridge

1995: TOWARDS 300 METERS WHILE IN AMSTERDAM…

Gustav Mahler


