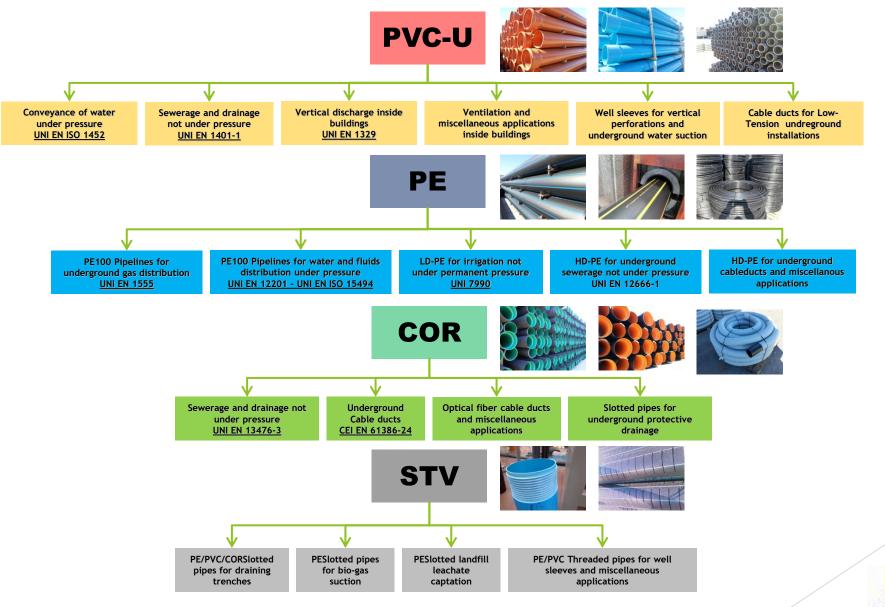
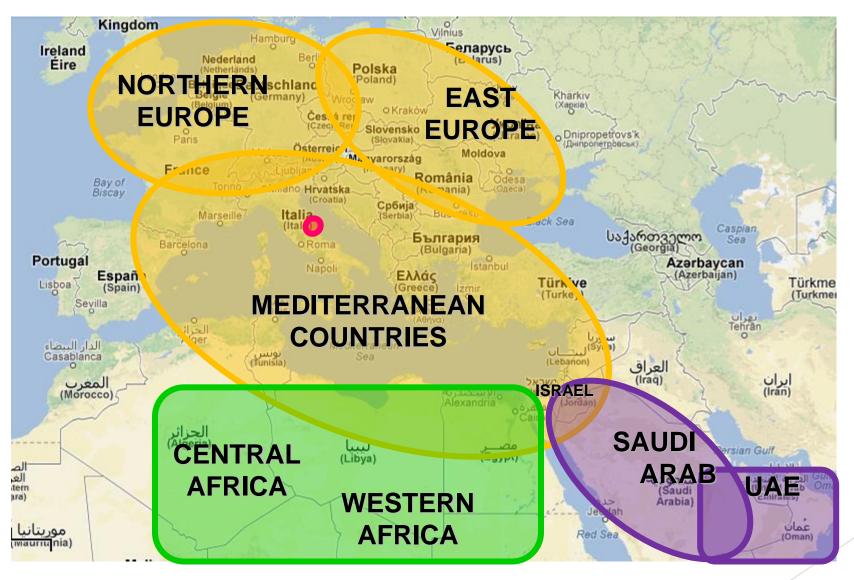


COMPANY PROFILE

- ✓ **LEADING EUROPEAN PRODUCER OF PIPES**MADE OF PE, PP AND STRUCTURED WALL PIPES
 - ESTABLISHED IN 1974
 - 2022 TURNOVER: 54 MLN EUR
 - GLOBAL MARKET
 - Infrastructures (water, gas, sewage, cableducts)
 - Irrigation
 - Buildings
 - N. OF EMPLOYEES: 100
 - PRODUCTION: 25.000 Tons/yr
 - 2 PRODUCTION SITES
 - Pipe production site: No. 3 production facilities
 - PE (polyethylene pipes)
 - PVC (PVC pipes)
 - COR (double-wall pipes)





PRODUCT PORTFOLIO

A GLOBAL MARKET

Mario laccarino R&D Picenum Plast

FRAMEWORK

- ✓ ENVIRONMENTAL CHANGES AND NONCONTROLLED URBAN GROWTH LEAD TO HYDROGEOLOGICAL INSTABILITY AND CRITICAL
 SITUATIONS WHERE SAFETY IS IMPAIRED
- ✓ NEW STANDARDS AND CRITERIA AIMING TO MATCH
 NEW CRITICAL CONDITIONS DEMAND FOR
 WASTEWATER AND DRAINAGE NEWTORKS WITH
 HIGHER PERFORMANCES, CAPABILITY AND
 RELIABILITY
- ✓ PLASTIC MATERIALS USED IN PIPING INDUSTRY
 PASSED A TREND OF TECHNOLOGICAL GROWTH:
 - ✓ RAW MATERIAL PEFORMANCES
 - ✓ UPGRADED PRODUCT STANDARDS
 - **✓ PRODUCTION TECHNOLOGY**
 - **✓ PRODUCT PERFORMANCES AND RELIABILITY**

<PE / PP structured-wall piping system
according to EN 13476-3 with ribbed
double-layer socket joint for sewage and
drainage not under pressure>>

THE NORM

EN 13476-3 (2020)

Plastics piping systems for non-pressure underground drainage and sewerage -Structured-wall piping systems of PVC-U, PP and PE Part 3: Specifications for pipes and fittings with smooth internal and profiled external surface and the system, Type B

Raw materials:

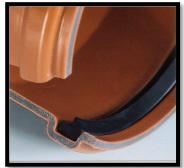
Structured wall

(Outer smooth, inner smooth)

(Outer profiled, inner smooth)

Field of application:

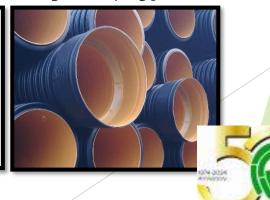
Outside the building structure



THE NORM

EN 13476-3 (2020)

Plastics piping systems for non-pressure underground drainage and sewerage - Structured-wall piping systems of PVC-U, PP and PE Part 3: Specifications for pipes and fittings with smooth internal and profiled external surface and the system, Type B


<u>Part 2</u> Specifications for pipes and fittings with smooth internal and smooth external surface and the system, Type A

<u>Part 3:</u> Specifications for pipes and fittings with smooth internal and profiled external surface and the system, Type B

RAW MATERIAL FEATURES

CHEMICAL & PHYSICAL ASPECTS

MECHANICAL ASPECTS

TECHNOLOGY

SOCIAL,
ENVIRONMENTAL &
ECONOMICAL ASPECTS

LOW MASS DENSITY

CHEMICAL STABILITY

WEAR RESISTANCE

YOUNG MODULUS

TOUGHNESS

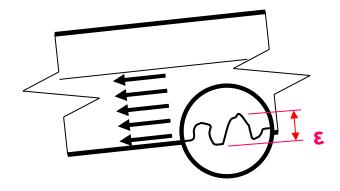
IMPACT RESISTANCE

MANUFACTURING

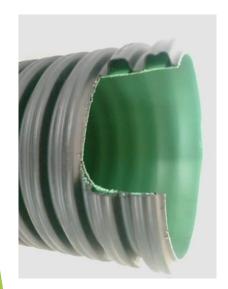
RAW MATERIAL AVAILABILITY

MATURITY (GERMANY, 1957)

NO HEAVY METALS

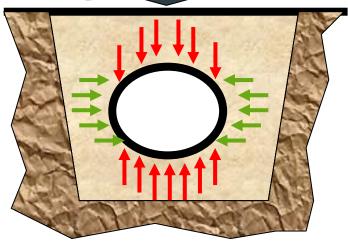

COST EFFECTIVENESS

RECYCLE

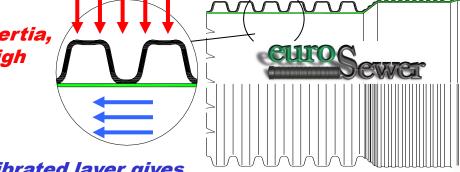


STRUCTURED WALL

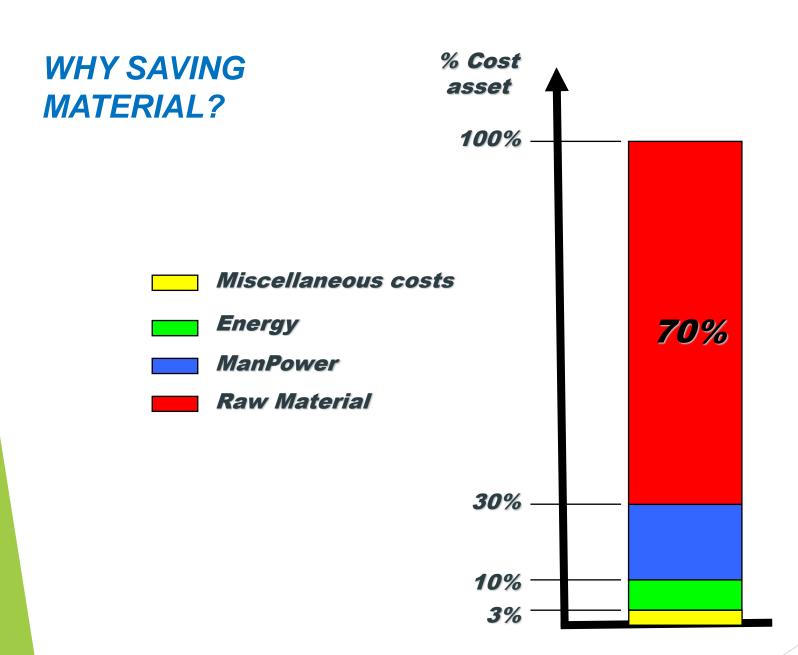
Hydraulic design



$$Q = v \cdot A = A \cdot c \cdot \sqrt{R \cdot i} \propto \varepsilon$$


Structural design

$$SN = E \cdot \frac{I}{D_m^3} \propto e$$



- The smooth calibrated layer gives low roughness, thus providing high hydraulic performances (speed, flow-rate)

STRUCTURED WALL

LIGHTWEIGHT

- ✓ Moving advantages
- √ Handling advantages
- ✓ Safety of Personnel

CHEMICAL RESISTANCE

√ To wear / Wash-out

Cast Iron / mild steel

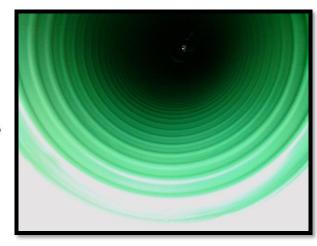
CHEMICAL RESISTANCE

√ To wear / Wash-out

✓ To biological housing / sedimentation



Cast Iron / mild steel


CHEMICAL RESISTANCE

✓ To biological housing / sedimentation

✓ To chemical attacks

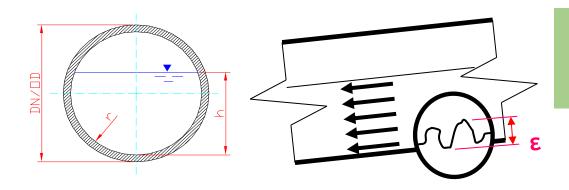
Concrete

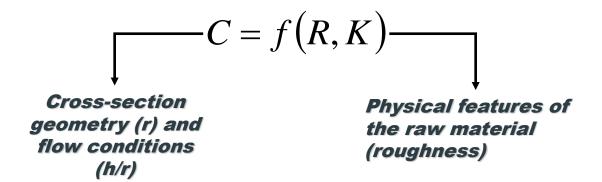
CHEMICAL RESISTANCE

- √ To wear / Wash-out
- ✓ To biological housing / sedimentation
- ✓ To chemical attacks
- ✓ To electrochemical corrosion

Cast iron / Mild Steel

MECHANICAL PERFORMANCES

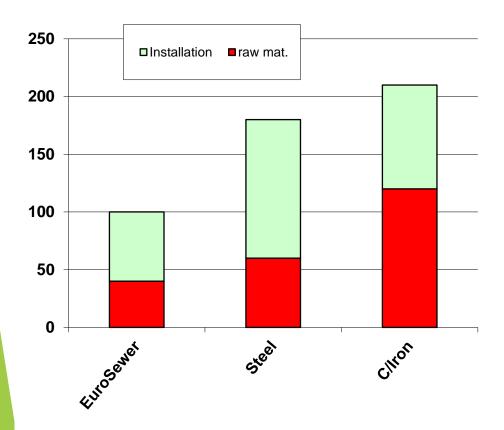

- ✓ Impact & Injuries resistance
- ✓ Optimal compromise Stiffness / Flexibility
- √ Joint tightness
- √ Bending



HYDRAULIC PERFORMANCES

$$Q = C \cdot \frac{1}{2} r^2 \left\{ \left[\frac{\pi}{90} ar \cos \left(1 - \frac{h}{r} \right) \right] - sen \left[2ar \cos \left(1 - \frac{h}{r} \right) \right] \right\} \cdot \sqrt{i \frac{\frac{1}{2} r^2 \left\{ \left[\frac{\pi}{90} ar \cos \left(1 - \frac{h}{r} \right) \right] - sen \left[2ar \cos \left(1 - \frac{h}{r} \right) \right] \right\}}{r \left[\frac{\pi}{90} ar \cos \left(1 - \frac{h}{r} \right) \right]}$$

- ✓ Polyethylene, as most of plastic materials, has very low roughness values
- ✓ Unlike traditional materials, roughness doesn't change with use (no decay of the smoothness, due to destructive phenomena such as erosion, wear, chemical attacks, bacteria)
- ✓ Under these hypothesis, the replacement of a "traditional" pipe (high roughness, low wear resistance) with a PE structured-wall pipe leads to many advantages, such as:


HYDRAULIC PERFORMANCES

Raw material	K _s (m ^{1/3} sec ⁻¹)					
material	PE	Concrete	Δ%			
New	100÷80	80	0			
After use	100÷80	65÷50	-23% ÷ - 68%			

Average Ks values for sewage networks, according to Gauckler-Strickler formula

- Flow-rate increase (long-term evaluation) up to 23%-60% with respect to concrete pipes
- High resistance to chemical attacks, in particular to acids and to bacteria
- Excellent wear / erosion resistance

Installation costs for different materials (EuroSewer as a reference = 100)

COST EFFECTIVENESS

- ✓ With respect to traditional materials
- ✓ Taking into account long-term costs (maintenance & repair)
- ✓ Quick Installation = less social impact

		SN (Non trafficked areas) Depth 1-3 m Undisturbed native soil group							
FILLING MATERIAL GROUP	COMP. CLASS								
		1	2	3	4	5	6		
	W	1,25	1,25	2,0	2,0	4,0	5,0		
1	M	1,25	2,0	2,0	4,0	5,0	6,3		
	N	2,0	2,0	2,0	4,0	8,0	10,0		
	W		2,0	2,0	4,0	5,0	5,0		
2	M		2,0	4,0	5,0	6,3	6,3		
	N		*	6,3	8,0	8,0	*		
	W			4,0	6,3	8,0	8,0		
3	M			6,3	8,0	10,0	*		
	N			*	*	*	*		
	W				6,3	8,0	8,0		
4	M				*	*	*		
	N				*	*	*		

ENV 1046

- ✓ Pipes can be installed at a depth 1-6 m without cast concrete protection
- ✓ Pipes can be installed either in non trafficked or heavy trafficked areas
- ✓ General installation prescriptions must be followed:
 - √ Trench size
 - ✓ Choice of filling soil
 - ✓ Choice of compaction method

Filling Material group	Compact ion Class.	SN (Non trafficked areas) Depth 3-6 m Undisturbed native soil group							
		1	2	3	4	5	6		
1	W	2,0	2,0	2,5	4,0	5,0	6,3		
'	M	2,0	4,0	4,0	5,0	6,3	8,0		
2	W		4,0	4,0	5,0	8,0	8,0		
2	M		5,0	5,0	8,0	10,0	*		
3	W			6,3	8,0	10,0	*		
3	M			*	*	*	*		
4	W				*	*	*		
4	M				*	*	*		

ENV 1046

- ✓ Pipes can be installed at a depth 1-6 m without cast concrete protection
- ✓ Pipes can be installed either in non trafficked or heavy trafficked areas
- ✓ General installation prescriptions must be followed:
 - √ Trench size
 - ✓ Choice of filling soil
 - ✓ Choice of compaction method

Filling Material group	Compact ion Class.	SN (Trafficked areas) Depth 1-3 m Undisturbed native soil group							
1	W	4,0	4,0	6,3	8,0	10, 0	*		
2	W		6,3	8,0	10,0	*	*		
3	W			10,0	*	*	*		
4	W				*	*	*		

Depth 3-6 m

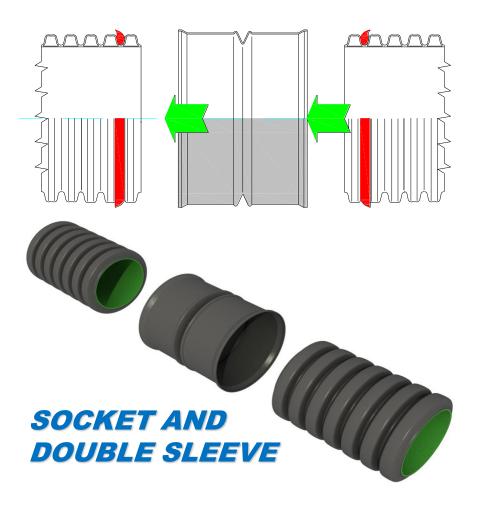
1	W	2,0	2,0	2,5	4,0	5,0	6,3
2	W		4,0	4,0	5,0	8,0	8,0
3	W			6,3	8,0	10, 0	*
4	W				*	*	*

ENV 1046

- ✓ Pipes can be installed at a depth 1-6 m without cast concrete protection
- ✓ Pipes can be installed either in non trafficked or heavy trafficked areas
- ✓ General installation prescriptions must be followed:
 - ✓ Trench size
 - ✓ Choice of filling soil
 - ✓ Choice of compaction method

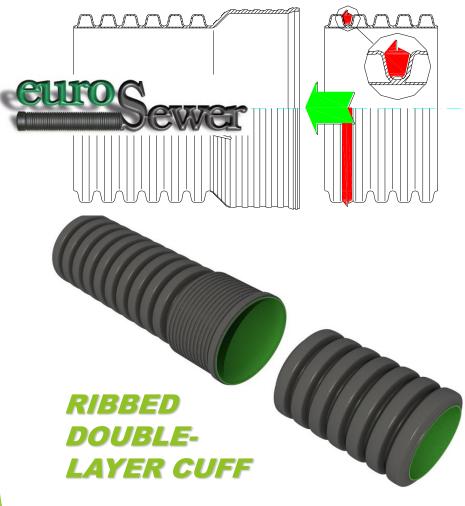
- √ Lightweight
- √ Best resistance

✓ High mechanical performances


- ✓ Custom manufacturing
- ✓ Cost effectiveness

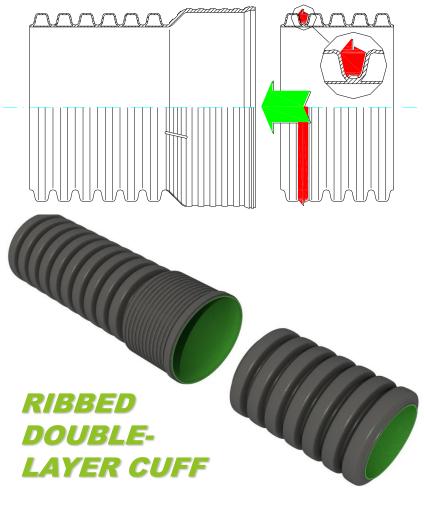
- ✓ Moving & Handling advantages
- ✓ Easy & Quick installation
- √ To electro-chemical corrosion
- √ To chemical attacks
- √ To wear
- √ To biological housing / sedimentation
- √ Impact & Injuries resistance
- √ Flexibility
- √ Stiffness
- ✓ Joint tightness
- √ Lengths & Dimensions
- ✓ Packages
- **√** Colours
- ✓ Overall installation
- ✓ Long-time (maintenance & repair)

QUALITY TESTING


Characteristic	Test method		Requirements
Ring Stiffness	E	EN ISO 9969	≥ SN declared by the prodcer
Creep modulus	E	EN ISO 9967 (defl. 3%)	≤ 4 (with 2-yrs extrapolation)
Impact strength at 0°C	E	EN ISO 3127	TIR ≤ 10%
Ring flexibility		EN 13968 (defl. 30%)	No decrease of the measured force No crack during test
Oven test		ISO 12091	No delamination
		H2O/defl.	No leakage for 15 min.
Water and air	EN ISO	Air/defl.	ΔP < 10% per 15 min.
tightness of the joint	13259	H2O/squash	No leakage for 15 min.
	Air/squash		ΔP < 10% for 15 min.

- Critical aspects:

- ✓ <u>Two gaskets to be installed =</u> <u>two potential weak points for</u> <u>leeaking</u>
- √ More time for installing, storing and checking operations
- ✓ <u>Sleeves are generally the</u> weakest part of the pipeline


Integrated in-line joint system maufactured during pipe extrusion

- Technical advantages
- √ <u>Half of weak points</u> with respect to the sleeve joint system
- √ <u>Integrated system</u> without any further technological process
- ✓ <u>Ribbed double-layer cuff</u>:

 Structural reinforcement and mechanical stiffness just in the weakest point of the network

Integrated in-line joint system maufactured during pipe extrusion

- Operational advantages
- ✓ Easier working site
 management:
 Less items (sleeves, gaskets)
 to buy/manage
- ✓ <u>Easier install</u>: less items to prepare/store/handle
- ✓ Quick & safe install: Less items to assemble/check
- ✓ <u>Cost-effective install:</u>
 The advantages of structured wall pipes join to the double-layer cuff features

RIBBED
DOUBLELAYER CUFF

Integrated in-line joint system maufactured during pipe extrusion

euro Sewer

- Operational advantages

- √ <u>Easier working site</u> <u>management:</u> Less items (sleeves, gaskets) to buy/manage
- ✓ <u>Easier install</u>: less items to prepare/store/handle
- ✓ Quick & safe install: Less items to assemble/check
- ✓ <u>Cost-effective install:</u>
 The advantages of structured wall pipes join to the double-layer cuff features

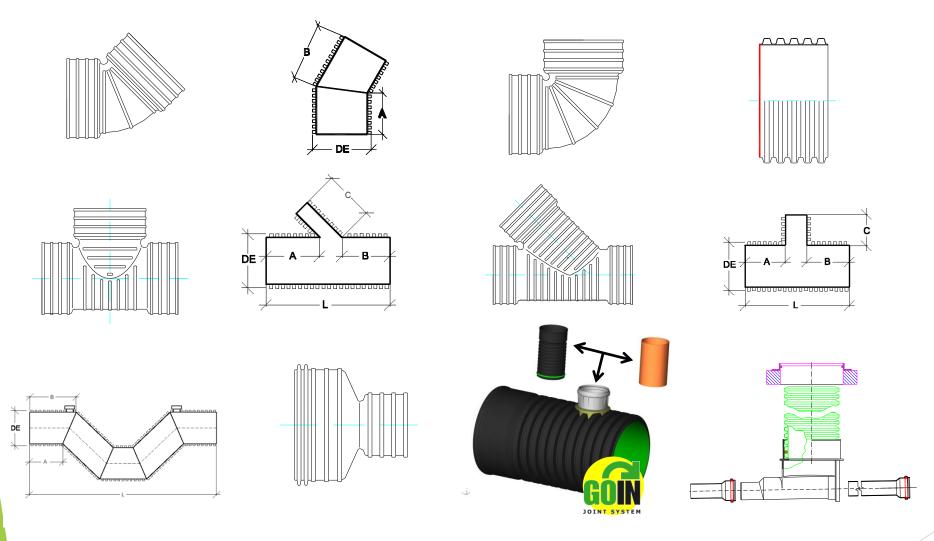
DN/OD (mm)	DN/ID (mm)	Ring Stiffness SN (KPa)				
125			8			
160			8			
200		4	8		16	
250		4	8		16	
315		4	8	8	16	
	300	4	8	8	16	
400		4	8	8	16	
	400	4	8	8	16	
500		4	8	8	16	
	500	4	8	8	16	
630		4	8	8	16	
	600	4	8	8	16	
800		4	8	8	16	
1000		4	8	8	16	
1200		4	8	8	16	

✓ Pipe sizes according to DN/OD standard (external diameter)

- •Wide range of sizes available (DN/OD 125 thru 1200 mm)
- Availability of OD-based fittings and ancillaries from different producers for interchangeability*
- •Easy comparison with DN/OD based sizes, e.g.:
 - PVC pipes for sewerage according to EN 1401
 - •HD-PE pipes for sewerage according to EN 12666

✓ Pipe sizes according to DN/ID standard (internal diameter)

- •Easy hydraulic design, with a more familiar approach, since designs & checks can be performed by using tools, methods and tables
- •Allows a quick comparison of the hydraulic properties with respect to traditional materials, in case of repair / replacement / improvement of exhisting sewage networks, e.g.:
- Concrete pipes
- Ceramic pipes (Grès)
- Fiber-reinforced concrete pipes
- ·Cast iron / Mild Steel
- •PRFV GRP


EUROSEWER FAMILY

DN/OD (mm)	DN/ID (mm)	Ring Stiffness SN (KPa)				
125			8			
160			8			
200		4	8		16	
250		4	8		16	
315		4	8	8	16	
	300	4	8	8	16	
400		4	8	8	16	
	400	4	8	8	16	
500		4	8	8	16	
	500	4	8	8	16	
630		4	8	8	16	
	600	4	8	8	16	
800		4	8	8	16	
1000		4	8	8	16	
1200		4	8	8	16	

- ✓ High-Stiffness pipes made of PP-HM
 - •PP-HM provides high stiffness (SN 16 KPa) keeping constant pipe weight
 - •High strenght makes installations more reliable against mistakes while pipe laying
 - •Higher Stiffness helps to compensate underestimated soil conditions
 - •Specific for critical installation conditions (e.g. high installation depth, bad native soils, high-traffick areas)
 - •Available both DN/OD and DN/ID ranges

THE SYSTEM

...And further standard / custommade special items and fittings!

PICENUMPLAST.COM

www.picenumplast.com > Technical Data

- ✓ Product technical datasheets
- √ Installation procedures
- √ Technical manuals
- ✓ Performance tables

CASE HISTORY

✓ Rome (Italy) Design of special pipe-in pipe for sewerage system preventing contamination in archeological areas

CASE HISTORY

 ✓ Grottammare (Italy)

 Speial manhole bases with EuroSewer pipe extention for stormwater drainage in seaside roadways

√ Milan (Italy)

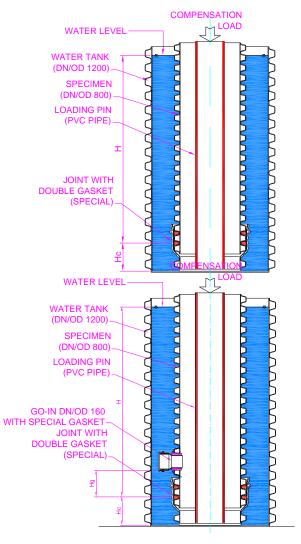
•Installation of DN/OD 1200 mm SN16 pipeline into a subway of a high-trafficked roadway

✓ L'Aquila (Italy)

High deflection of DN/ID 300 mm pipe joint installed in earthquake area (2009)
Pipeline withstood final hydraulic test

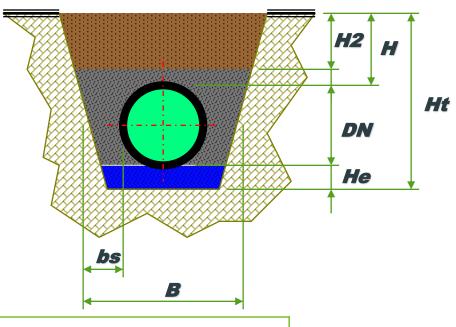
√ Tajura (Libya)

•Preliminary air test of DN/OD 800 mm pipe and fittings used in stormwater drainage system of new suburban area



✓ Suceava (Romania)

•Preliminary hydraulic testing of EuroSewer system (pipes+manholes) DN/OD 315 mm used in stormwater network of a main roadway


√ Larnaka (Cyprus)

•Special testing equipment for assessing hydraulic resistance of EuroSewer pipes and fittings to heavy watertable conditions

Terms & Definitions

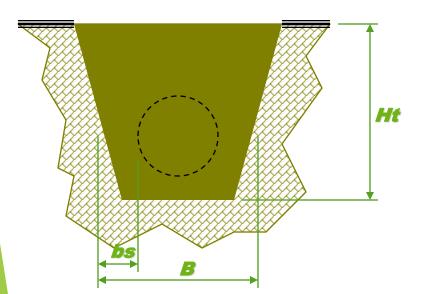
- **H** Depth of installation
- **H2** Remaining backfilling thickness
- Ht Trench depth
- He Bedding thickness
- **DN** Nominal size (outer diameter)
- B Trench width
 B= DN+2bs

Trench Type

Condition

Narrow Trench

 $H \ge 2B$ and $B \le 3DN$

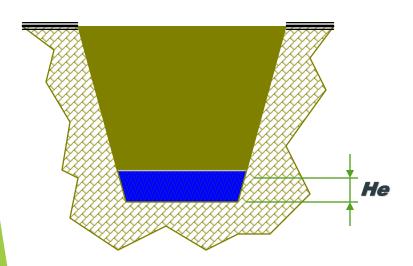

Large Trench

H ≥ **2B** and **3DN** ≤ **B** ≤ **10DN**

Infinite Trench

H ≥ **2B** and **B** ≥ **10DN**

- **✓ AVOID HAZARDOUS CONDITIONS**
- ✓ SLOPE / SUPPORT THE TRENCH WALLS
- ✓ AVOID OBJECT FALLS AND WALL COLLAPSING
- **✓ BOTTOM OF THE TRENCH SMOOTH AND WITHOUT SHARP ROCKS**
- ✓ KEEP MACHINERY AND HEAVY EQUIPMENT AWAY FROM THE TRENCH


TRENCH WIDTH bs

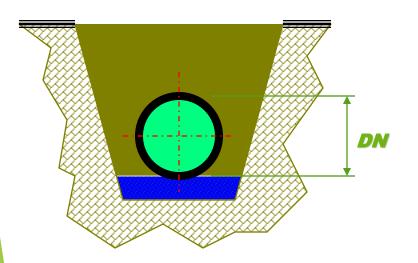
DN (mm)
DN≤300
300 <dn≤900< td=""></dn≤900<>
900 <dn≤1600< td=""></dn≤1600<>
<u> </u>

bs (mm)		
Typical	Minimum	
250	250	
300-400	400	
400-500	500	

BackfillingBedding

✓ PROVIDES UNIFORM SUPPORT FOR THE WHOLE LENGHT OF THE PIPE

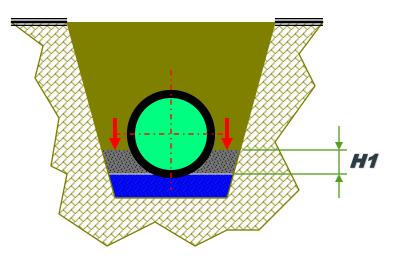
- ✓ LEVEL AND SPREAD THE BEDDING MATERIAL (KEEP SOFT)
- ✓ PROVIDE HOLES FOR THE JOINTING PART (COMPACT THIS PARTS)


He Bedding thickness = 100-150 mm (according to DN)
Material: gravel / sand / crushed rock

Backfilling

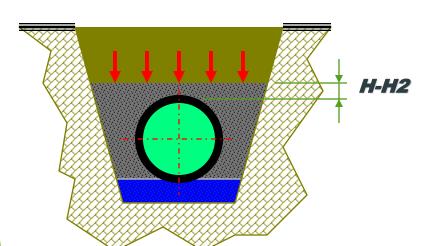
Pipe laying

- ✓ PIPE MUST BEAR THROUGHOUTN ITS LENGHT
- **✓ CHECK / AVOID ANGULAR DEFLECTIONS**
- ✓ CHECK THE INCLINATION OF THE PIPE FOR FLOW CONDITIONS
- ✓ JOIN PIPES ACCORDING TO I/CO-100
- ✓ CLOSE ENDS OF PIPING AFTER DAILY WORK
- ✓ PROVIDE FITTINGS FOR FUTURE CONNECTIONS


PIPE LAYING:

Backfilling

Pipe zone (1)


LAYER THICKNESS H1
ACCORDING TO

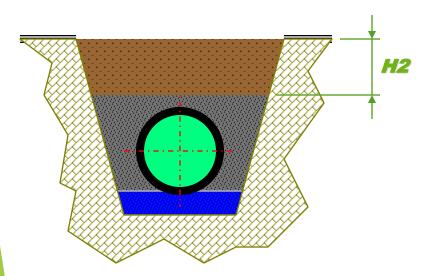
- **✓ BASIC PROCEDURE:**
 - Backfill in layers
 - Compact each layer
- **✓ USE ONLY CLASS 1-4 SOILS**

- **√** SOIL TYPE
- **✓ COMPACTION CLASS (N,M,W)**
- **✓ COMPACTION METHOD**

Backfilling

Pipe zone (2)

- **✓ BASIC PROCEDURE:**
 - Backfill in layers
 - Compact each layer
- **✓ USE ONLY CLASS 1-4 SOILS**
- **✓ REMOVE TRENCH PROTECTIONS WHILE FILLING**


- LAYER THICKNESS H1
 ACCORDING TO
- **✓ SOIL TYPE**
- **✓ COMPACTION CLASS (N,M,W)**
- *✓* **COMPACTION METHOD**

(H-H2) THICKNESS = 100 - 300 mm

Backfilling

Soil Type	Typical Name	Example(s)
	Single-sized gravel	
1	Well-graded gravels, Gravel-sand mixtures	Crushed rock, river and beach gravel, morainic gravel, scoria, volcanic ash
2	Single-sized sands	Dune & drift sand, valley sand, basin sand
2	Well-graded sands, sand-gravel mixtures	Morainic sand, terrace sand, beach sand
	Silty gravels, graded gravel-sand-silt mixures, clayey gravels	Weathered gravel, slope debris,
3	Silty sands, poorly graded sand-silt mixtures	Liquid sand, loam, loess
	Clayey sands, poorly graded sand-clay mixtures	Loamy sand, alluvial clay / marl
4	Inorganic silts, very fine sands, rock flour	Loess, loam
4	Inorganic clay, distinctly plastic clay	Alluvial marl, clay

BackfillingRemaining backfilling

- ✓ EXCAVATED MATERIAL CAN BE USED*
- **✓ COMPACTION CLASS:**
 - W ONLY (trafficked areas)
 - N (non-trafficked areas)
- ✓ ARRANGE GROUND SURFACE ACCORDING TO PRESCRIPTIONS

*MAX. PARTICLE SIZE = 300 mm

Backfilling

Remaining backfilling – soil properties

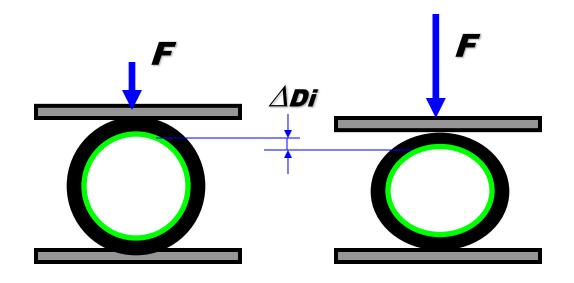
- USE COMPACTABLE MATERIAL (WHERE APPLICABLE)
- NO PARTICLES GREATER THAN IN TAB
- NO FROZEN MATERIAL
- NO DEBRIS (E.G. ASPHALT, BOTTLES, CANS, TREES)

DN (mm)
DN≤100
100 <dn≤300< td=""></dn≤300<>
300 <dn≤600< td=""></dn≤600<>
600 <dn< td=""></dn<>

Maximum size		
<i>(mm)</i>		
Single size	Well-graded	
material	gran. Mat.	
10	15	
15	20	
20	30	
30	40	

Final check According to EN 1610

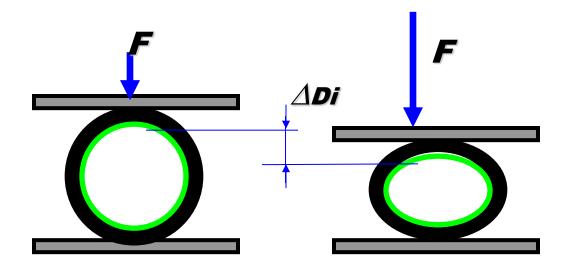
- **✓ DO NOT COVER THE JOINTS BEFORE THE FINAL CHECK (DM 12/85)**
- ✓ CHECK MANHOLES / FITTINGS / PIPES SEPARATELY (SUGGESTED)
- **✓ CHECK METHOD:**
 - **✓BYAIR**(L)
 - **✓ BY WATER (W)** main test
- **✓ SEE EN 1610 FOR TEST PARAMETERS**


Thanks for your attention! And now... question time

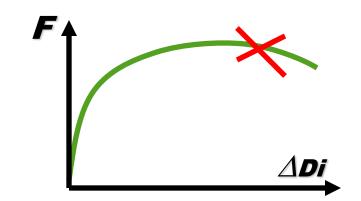
Picenum Plast spa www.picenumplast.com

Tecnical Office: mario.iaccarino@picenumplast.com

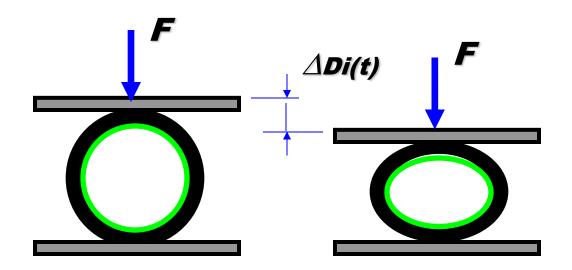
EN ISO 9969 Ring Stiffness test


F steady increasing

 $\Delta Di = 3\% Di$


L= 300 mm

EN ISO 13968 Ring flexibility test

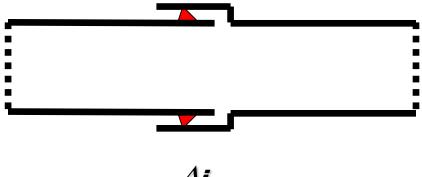


F steady increasing $\Delta Di = 30\% Di$ L = 5 corrugations

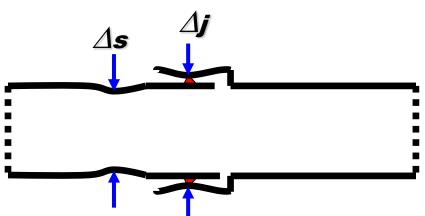
EN ISO 9967 Creep ratio test

F constant

△Di meas. At time
intervals


Time test = 1000 hrs

Extrapolation at 2yrs: Creep Ratio \leq 4



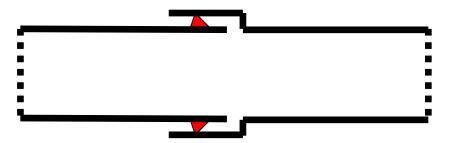
EN 13259

Joint tightness, cond. B – radial defl.

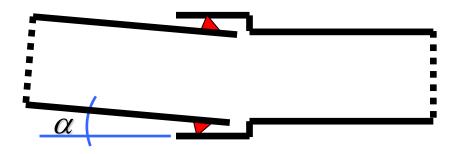
1m + 1m + joint sample

$$\Delta j$$
= 5% Di , Δs = 10% Di

- 1. P= 0,5 bar (water)
- 2. P= -0,3 bar (air)


Water test:
No leakage for 15 minutes

Vacuum test: $\triangle P$ max = 10% for 15 min.



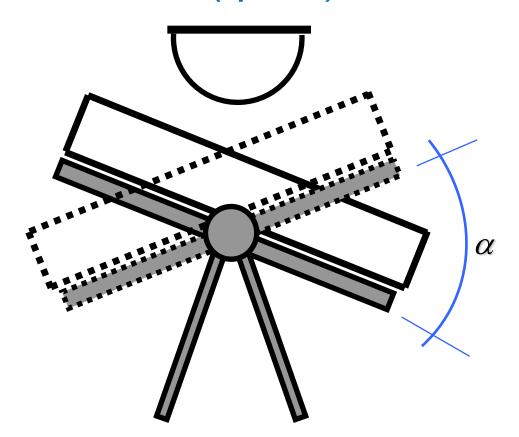
EN 13259

Joint tightness, cond. C – angle defl.

1m + 1m + joint sample

$$\alpha$$
 =f(Di) 1°-2°

- 1. P= 0,5 bar (water)
- 2. P= -0,3 bar (air)


Water test:
No leakage for 15 minutes

Vacuum test: $\triangle P \max = 10\%$ for 15 min.

EN 295-3

Wear resist. test (optional)

Sample: half pipe (lenght = 1 m)

Water with sand & gravel mixture

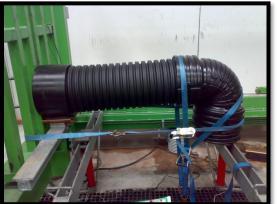
α**= 45°**

100.000 cycles

Cycle time: 3 sec.

(total test time 3,5 days)

Result after 100.000 cycles:


Avg removed thickness < 0.1 mm

OPERATIONAL ADVANTAGES

MECHANICAL PERFORMANCES

√ Impact & Injuries resistance

✓ Optimal compromise Stiffness / Flexibility

√ Joint tightness

✓ Bending

